Cho tam giác vuông DEF Có góc D = 90 đường phân giác EM từ M kẻ MP vuông góc với EF chứng minh rằng
ED = EF
EM là đường trung trực của DP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEDK có
EM là đường cao
EM là đường phân giác
Do đó: ΔEDK cân tại E
b: Xét ΔEDM và ΔEKM có
ED=EK
\(\widehat{DEM}=\widehat{KEM}\)
EM chung
DO đó: ΔEDM=ΔEKM
Suy ra: DM=DK
mà ED=EK
nên EM là đường trung trực của DK
a)xét ΔEMF và ΔFNE có:
\(\widehat{EMF}\)=\(\widehat{FNE}\)=\(90^o\)
EF là cạnh chung
\(\widehat{MFE}\)=\(\widehat{NEF}\)(ΔDEF cân tại D)
\(\Rightarrow\)ΔEMF=ΔFNE(cạnh huyền góc nhọn)
vì ΔDEF cân tại D \(\Rightarrow\)DE=DF
mà EN=FM
\(\Rightarrow\)DE-EN=DF-FM
hay DN=DM
b)xét ΔDHN và ΔDHM có:
\(\widehat{DNH}\)=\(\widehat{DMH}\)=\(90^o\)
DN=DM(ch/m trên)
DH là cạnh chung
\(\Rightarrow\)ΔDHN=ΔDHM(cạnh huyền cạnh góc vuông)
\(\Rightarrow\)\(\widehat{MDH}\)=\(\widehat{NDH}\)(2 góc tương ứng)
kéo dài DH cắt EF tại O ta được:
xét ΔDOF và ΔDOE có:
DE=DF(ΔDEF cân tại D)
\(\widehat{FDO}\)=\(\widehat{EDO}\)(ch/m trên)
\(\widehat{DEO}\)=\(\widehat{DFO}\)(ΔDEF cân tại D)
\(\Rightarrow\)ΔDOF=ΔDOE(g-c-g)
\(\Rightarrow\widehat{DOE}=\widehat{DOF}\)(2 góc tương ứng)(1)
OE=OF(2 cạnh tương ứng)(2)
Mà \(\widehat{DOE}+\widehat{DOF}=180^o\)(2 góc kề bù)(3)
Từ (1)và(3)\(\Rightarrow\)\(\widehat{DOE}=\widehat{DOF}=\dfrac{180^o}{2}=90^o\)(4)
Từ (2)và(4)\(\Rightarrow\)DH là trung trực của EF(đ.p.cm)
a: Xét ΔNME có
ND là đường cao
ND là đường phân giác
Do đó: ΔNME cân tại N
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
DO đó: ΔNMD=ΔNED
Suy ra: DM=DE
mà NM=NE
nên ND là đường trung trực của ME
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
Hình bạn tự vẽ nha ! Mình nghĩ ED=EP mới đúng chứ !
* CMR: ED=EP
Tam giác vg DEM và tam giác vg PEM có:
EM: Cạnh huyền chung
Góc DEM = góc PEM
\(\Rightarrow\)Tam giác vg DEM = tam giác vg PEM (cạnh huyền-góc nhọn)
\(\Rightarrow\)ED=EF (đpcm)
* CMR: EM là đường trung trực của DP
Ta có: ED=EP (cmt) \(\Rightarrow\)E thuộc đường trung trực của DP
MD=MP (tam giác vg DEM=tam giác vg PEM) \(\Rightarrow\)M thuộc đường trung trực của DP'
\(\Rightarrow\)EM là đường trung trực của DP (đpcm)
Có gì sai sót mong bạn thông cảm !