K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

     \(4x^2+4y^2-12x-12y+20=0\)

\(\Leftrightarrow\)\(4x^2-12x+9+4y^2-12y+9+2=0\)

\(\Leftrightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2=0\)

Vì   \(\left(2x-3\right)^2\ge0;\) \(\left(2y-3\right)^2\ge0\)

\(\Rightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2\ge2\)

Vậy pt vô nghiệm

24 tháng 4 2018

\(4x^2-12x+9+4y^2-12y+9+2=0\)

mặt khác

\(\left(2x-3\right)^2+ \left(2y-3\right)^2+2=0\)

\(\left(2x-3\right)^2+\left(2y-3\right)^2\ge0\)

\(\Rightarrow\left(2x-3\right)^2+\left(2y-3\right)^2+2>0\)

=> PTVN

9 tháng 8 2023

Đáp án:

 

Giải thích các bước giải:

Ta có:

2x2+3x+22�2+3�+2

=2(x2+32x+1)=2(�2+32�+1)

=2(x2+2.x.34+916+716)=2(�2+2.�.34+916+716)

=2[(x+34)2+716]=2[(�+34)2+716]

=2(x+34)2+78=2(�+34)2+78

Nhận xét:

2(x+34)202(�+34)2≥0 x

2(x+34)2+78>0⇒2(�+34)2+78>0 x

Mà x3+2x2+3x+2=y3�3+2�2+3�+2=�3

Nên: x3<y3�3<�3

Giả sử: y3<(x+2)3�3<(�+2)3

x3+2x2+3x+2<x3+6x2+12x+8⇔�3+2�2+3�+2<�3+6�2+12�+8

4x29x6<0⇔-4�2-9�-6<0

(4x2+9x+6)<0⇔-(4�2+9�+6)<0

4x2+9x+6>0⇔4�2+9�+6>0

4(x2+94x+8164)+1516>0⇔4(�2+94�+8164)+1516>0

4(x2+2.x.98+8164)+1516>0⇔4(�2+2.�.98+8164)+1516>0

4(x+98)2+1516>0⇔4(�+98)2+1516>0 (luôn đúng)

Vậy điều giả sử đúng hay y3<(x+2)3�3<(�+2)3

Mà: x3<y3�3<�3

Nên: x3<y3<(x+2)3�3<�3<(�+2)3

Mà y3�3 là lập phương của 11 số nguyên, giữa x3�3 và (x+2)3(�+2)3 chỉ có duy nhất 11 lập phương của số nguyên là (x+1)3(�+1)3

Nên: y3=(x+1)3�3=(�+1)3

x3+2x2+3x+2=x3+3x2+3x+1⇔�3+2�2+3�+2=�3+3�2+3�+1

x2+1=0⇔-�2+1=0

1x2=0⇔1-�2=0

(1x)(1+x)=0⇔(1-�)(1+�)=0

 [1x=01+x=0[1−�=01+�=0

 [x=1x=1[�=1�=−1

+)x=1+)�=1 thì y3=1+2+3+2=8�3=1+2+3+2=8

<=> y=2`

+)x=1+)�=-1 thì y3=1+23+2=0�3=-1+2-3+2=0

y=0⇔�=0

Vậy (x,y)=(1,2);(1,0)

9 tháng 8 2023

\(x^3+2x^2+3x+2=y^3\left(1\right)\)

- Nếu \(x=0\Leftrightarrow y^3=2\) không tồn tại y nguyên

- Nếu \(x\ne0\Rightarrow x^2\ge1\Rightarrow x^2-1\ge0\)

\(\left(1\right)\Leftrightarrow y^3=x^3+2x^2+3x+2\)

\(\Leftrightarrow y^3=x^3+3x^2+3x+1-\left(x^2-1\right)\)

\(\Leftrightarrow y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\left(2\right)\)

Ta lại có 

\(y^3=x^3+2x^2+3x+2=x^3+\left[2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+2-\dfrac{9}{8}\right]\)

\(\Rightarrow y^3=x^3+\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]\)

mà \(\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]>0\)

\(\Rightarrow y^3< x^3\left(3\right)\)

\(\left(2\right),\left(3\right)\Rightarrow x^3< y^3\le\left(x+1\right)^3\)

\(\Rightarrow y^3=\left(x+1\right)^3\)

\(\left(2\right)\Rightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=1;x=-1\)

Nếu \(x=-1\Rightarrow y=0\)

Nếu \(x=1\Rightarrow y=2\)

Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;2\right)\right\}\) thỏa mãn đề bài

19 tháng 6 2019

a) \(x+xy-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)

\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)

\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)

Lập bảng tìm tiếp

19 tháng 6 2019

b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)

Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ...