K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

sai nhé

tại vì chưa chứng minh đc 3 cạnh  tạo thành tam giác

=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

24 tháng 4 2018

đúng bạn ạ

chúc bạn học tốt ~

1: S

2: S

3: Đ

4: S

5: Đ

6: Đ

19 tháng 2 2022

TT

Nội dung

Đúng

Sai

1

Nếu hai tam giác có ba góc bằng nhau từng đôi một thì hai tam giác đó bằng nhau.

 

x

2

Nếu ABC và DEF có AB = DE, BC =  EF,  thì ABC = DEF

x

 

3

Trong một tam giác, có ít nhất là hai góc nhọn.

x

 

4

Nếu góc A là góc ở đáy của một tam giác cân thì  > 900.

 

x

5

Nếu hai tam giác có ba cạnh tương ứng bằng nhau thì hai tam giác giác đó bằng nhau

x

 

6

Nếu một tam giác vuông có một góc nhọn bằng 450 thì tam giác đó là tam giác vuông cân Đúng

 

Chúc em học giỏi

a) Tam giác ABC vuông tại B

b) Tam giác DEF vuông tại F

c) Tam giác MNP không vuông

14 tháng 11 2019

D E F I K

Giải: a) Ta có: DE2 + DF= 32 + 42 = 9 + 16 = 25 

             EF2 = 52 = 25

=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)

b) Xét t/giác DEF có DI là đường trung tuyến

=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)

c) Ta có: DI = IF => t/giác DIF là t/giác cân

có IK là đường cao

=> IK đồng thời là đường trung tuyến

=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)

Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:

DI2 = IK2 + DK2 

=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25

=> IK = 1,5 (cm)

a) Xét ΔDEF có \(FE^2=DE^2+DF^2\left(13^2=5^2+12^2\right)\)

nên ΔDEF vuông tại D(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền FE, ta được:

\(DK\cdot FE=DE\cdot DF\)

\(\Leftrightarrow DK\cdot13=12\cdot5=60\)

hay \(DK=\dfrac{60}{13}\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:

\(KD^2+KE^2=DE^2\)

\(\Leftrightarrow KE^2=5^2-\dfrac{3600}{169}=\dfrac{625}{169}\)

hay \(KE=\dfrac{25}{13}\left(cm\right)\)

\(\Leftrightarrow S_{KDE}=\dfrac{KE\cdot KD}{2}=\dfrac{\dfrac{25}{13}\cdot\dfrac{60}{13}}{2}=\dfrac{1500}{169}\cdot\dfrac{1}{2}=\dfrac{750}{169}\left(cm^2\right)\)

26 tháng 10 2021

Ta có: DEF=MNP (gt)

⇒ DF=MP, DE=MN và EF=NP (*)

⇒ DF+EF=MP+NP

Vì DF+EF=10 (cm) (gt)

⇒ MP+NP=10(cm)

Vì: NP-MP=2 (cm) (gt)

⇒ NP=\(\dfrac{10+2}{2}=6\left(cm\right)\)

⇒ MP=6-2=4 (cm) 

Vì DE=MN (c/m trên) 

Vì DE=3 (cm) (gt)

⇒ MN=3 cm

Từ (*) ⇒ DF=4 cm, EF= 6cm 

26 tháng 10 2021

cảm ơn nha:)

31 tháng 12 2017

Câu 1: giống bài vừa nãy t làm cho bạn rồi!

Câu 2:

vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)

Câu 3 :

sửa đề chút nha : EF là tia phân giác góc DEH

ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)

mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)

=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)

14 tháng 11 2019

a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)

và \(EF^2=5^2=25\left(cm\right)\)

\(\Rightarrow DE^2+DF^2=EF^2\)

\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông

b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)

\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)

c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)

Lại có IK vuông góc DF

\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF

\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)