tam giác DEF gồm có 3 đoạn thẳng DE,EF,FD đúng hay sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT | Nội dung | Đúng | Sai |
1 | Nếu hai tam giác có ba góc bằng nhau từng đôi một thì hai tam giác đó bằng nhau. |
| x |
2 | Nếu ABC và DEF có AB = DE, BC = EF, thì ABC = DEF | x |
|
3 | Trong một tam giác, có ít nhất là hai góc nhọn. | x |
|
4 | Nếu góc A là góc ở đáy của một tam giác cân thì > 900. |
| x |
5 | Nếu hai tam giác có ba cạnh tương ứng bằng nhau thì hai tam giác giác đó bằng nhau | x |
|
6 | Nếu một tam giác vuông có một góc nhọn bằng 450 thì tam giác đó là tam giác vuông cân Đúng |
Chúc em học giỏi
a) Tam giác ABC vuông tại B
b) Tam giác DEF vuông tại F
c) Tam giác MNP không vuông
Giải: a) Ta có: DE2 + DF2 = 32 + 42 = 9 + 16 = 25
EF2 = 52 = 25
=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)
b) Xét t/giác DEF có DI là đường trung tuyến
=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)
c) Ta có: DI = IF => t/giác DIF là t/giác cân
có IK là đường cao
=> IK đồng thời là đường trung tuyến
=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)
Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:
DI2 = IK2 + DK2
=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25
=> IK = 1,5 (cm)
a) Xét ΔDEF có \(FE^2=DE^2+DF^2\left(13^2=5^2+12^2\right)\)
nên ΔDEF vuông tại D(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền FE, ta được:
\(DK\cdot FE=DE\cdot DF\)
\(\Leftrightarrow DK\cdot13=12\cdot5=60\)
hay \(DK=\dfrac{60}{13}\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:
\(KD^2+KE^2=DE^2\)
\(\Leftrightarrow KE^2=5^2-\dfrac{3600}{169}=\dfrac{625}{169}\)
hay \(KE=\dfrac{25}{13}\left(cm\right)\)
\(\Leftrightarrow S_{KDE}=\dfrac{KE\cdot KD}{2}=\dfrac{\dfrac{25}{13}\cdot\dfrac{60}{13}}{2}=\dfrac{1500}{169}\cdot\dfrac{1}{2}=\dfrac{750}{169}\left(cm^2\right)\)
Ta có: DEF=MNP (gt)
⇒ DF=MP, DE=MN và EF=NP (*)
⇒ DF+EF=MP+NP
Vì DF+EF=10 (cm) (gt)
⇒ MP+NP=10(cm)
Vì: NP-MP=2 (cm) (gt)
⇒ NP=\(\dfrac{10+2}{2}=6\left(cm\right)\)
⇒ MP=6-2=4 (cm)
Vì DE=MN (c/m trên)
Vì DE=3 (cm) (gt)
⇒ MN=3 cm
Từ (*) ⇒ DF=4 cm, EF= 6cm
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)
sai nhé
tại vì chưa chứng minh đc 3 cạnh tạo thành tam giác
=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
đúng bạn ạ
chúc bạn học tốt ~