S=4+4^2+4^3+4^4+...+4^60
CMR S chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : S = 4 + 42 + 43 + ... + 490
=> 4S = 42 + 43 + 44 + ... + 491
=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)
=> 3S = 491 - 4
=> S = \(\frac{4^{91}-4}{3}\)
b) Khi đó 3S + 4 = 4x + 10
<=> 491 - 4 + 4 = 4x + 10
=> 4x + 10 491
=> x + 10 = 91
=> x = 81
Vậy x = 81
S = 4 + 42 + 43 + ... + 490
Chứng minh chia hết cho 5
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )
= 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )
= 4.5 + 43.5 + ... + 489.5
= 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )
Chứng minh chia hết cho 21
S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )
= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )
= 4.21 + 44.21 + ... + 488.21
= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )
Tính S
S = 4 + 42 + 43 + ... + 490
4S = 4( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491
4S - S = 3S
= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490
= 491 - 4
\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)
Tìm x
3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )
<=> 491 - 4 + 4 = 4x+10
<=> 491 = 4x+10
<=> 91 = x + 10
<=> x = 81
a) S = 4.(1 + 4) + 43.(1 + 4) + ... + 42999.(1 + 4) = 5.(4 + 43 + ... + 42999) chia hết cho 5
b) S = 4.(1 + 4 + 42) + 44.(1 + 4 + 42) + ... + 42998.(1 + 4 + 42) = 21.(4 + 44 + ... + 42998) chia hết cho 21
CHỨNG MINH S CHIA HẾT CHO 10 :
\(S=4+4^2+...+4^{2004}\)
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)
\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)
\(S=1.20+4^3.20+...+4^{2003}.20\)
\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )
\(=>dpcm\)
CHỨNG MINH 3S+4 CHIA HẾT CHO 42004
\(S=4+4^2+4^3+...+4^{2004}\)
\(4S=4+4^2+4^3+...+4^{2005}\)
\(3S=4S-S=4^{2005}-4\)
MÀ 42005 CHIA HẾT CHO 42004
\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
S=\(\frac{4^{39}-1}{3}\)
b)lấy 4^39 -1 chia cho 15
\(4^{10}\)đồng dư vs 1 theo mod 15
4^30 đồng dư với 1 theo mod 15
4^39 đồng sư với 4 theo mod 15
4^39-1 đồng dư với 3 theo mod 15
\(\Rightarrow\)4^39-1=15k+3
S=\(\frac{4^{39}-1}{3}=\frac{15k+3}{3}=5k+1\)
c)5:21 dư 5
S = 4+42+.....+42004
S = (4+42)+(43+44)+....+(42003+42004)
S = 1(4+42)+43(4+42)+.....+42003(4+42)
S = 1.20 + 43.20 +......+ 42003.20
S = 20(1+43+...+42003) chia hết cho 10 (vì 20 chia hết cho 10)
S = 4+42+43+...+42004
4S = 42+43+44+...+42005
3S = 4S - S = 42005 - 4
=> 3S + 4 = 42005
Mà 42005 chia hết cho 42004
=> 3S + 4 chia hết cho 42004 (đpcm)
S = 4 + 42 + 43 + 44 + 45 + 46 + .......................... + 42010 + 42011 + 42012 + 42013 + 42015 + 42016
S = (4 + 42 + 43 + 44 + 45 + 46) + .......................... + (42010 + 42011 + 42012 + 42013 + 42015 + 42016)
S = (4 + 16 + 64 + 256 + 1024 + 4096) + .................................. + 42009.(4 + 16 + 64 + 256 +1024+ 4096)
S = 5460 + .......................... + 42009.5460
S = 5460.(1 + .................+ 42009)
S = 13.420.(1 +............... + 42009)
420=4.5.3.7
ta thấy S chia hết cho 4
4 đồng dư với 1 mod 3 =) 4+4^2+...4^2016 đồng dư 2016 mod 3 mà 2016 chia hết cho 3
vì 4+4^2=20, 4^3+4^4=..0, tương tự ta có 1008 cặp => S tận cùng là 0
4+4^2+4^3=84 chia hết cho 7=> có 673 cặp 3 số như thế( 2016 chia hết cho 3) =>S chia hết cho 7
từ tất cả => S chia hết hoc 420(4.5.7.3)
Lời giải:
$S=1+4+(4^2+4^3+4^4)+(4^5+4^6+4^7)+....+(4^{98}+4^{99}+4^{100})$
$=5+4^2(1+4+4^2)+4^5(1+4+4^2)+...+4^{98}(1+4+4^2)$
$=5+(1+4+4^2)(4^2+4^5+....+4^{98})$
$=5+21(4^2+4^5+...+4^{98})$
$\Rightarrow S$ chia $21$ dư $5$
S = 4 + 42 + 43 + 44 + ...... + 460
S = ( 4 + 42 + 43 ) + ........... + ( 458 + 459 + 460 )
S = 4( 1 + 4 + 42 ) + .......... + 458( 1 + 4 + 42 )
S = 4.21 + ..... + 458.21
S = 21 ( 4 + ..... + 458 )
vì 21 chia hết cho 21 => 21 ( 4 + ....... + 458 ) chia hết cho 21
=> S chia hết cho 21
S = 4 + 42 + 43 + ... + 460
= ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 458 + 459 + 460 )
= 4 . ( 1 + 4 + 42 ) + 44 . ( 1 + 4 + 42 ) + ... + 458 . ( 1 + 4 + 42 )
= 4 . 21 + 44 . 21 + ... + 458 . 21
= 21 . ( 4 + 44 + ... + 458 ) \(⋮\)21
Suy ra S chia hết cho 21