Cho tam giác ABC vuông ở C, có góc A = 60 độ, tia phân giác của góc BÁC cắt BC ở E , kẻ EK vuông góc AB , kẻ BD vuông góc AE. Chứng minh
a) AK=KB
B) AD=BC
Giúp mình với mai mk thi Hk rồi
Khỏi vẽ hình cx đc ák
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB can tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
b: Xét ΔAEC vuông tại C và ΔBED vuông tại D có
EA=EB
góc AEC=góc BED
=>ΔAEC=ΔBED
=>EC=ED
=>AD=BC
a)Vì AE là phân giác của góc BAC nên góc EAB=góc EBA
=> tg EAB cân tại E mà có EK là đg cao nên EK đồng thời là trung tuyên nên AK=BK
b)Xét tg ABC vuông tại C và tg BAD vuông tại D có
AB chung
ABC=BAD=30 độ
=> tg BAD=tg ABC(ch-gn)
=>AD=BC
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
=>AD là đường trung trực của CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
Mình ngại vẽ hình qá : )
a) Xét tam giác vuông ABC ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow60^o+\widehat{B}+90^o\Rightarrow\widehat{B}=90^o-60^o=30^o\)
Vì AD là tia phân giác
\(\Rightarrow\widehat{CAE}=\widehat{KAE}=30^o\)
Xét hai tam giác vuông AEK và BEK có:
EK là cạnh chung
\(\widehat{EAK}=\widehat{EBK}\left(cmt\right)\)
\(\Rightarrow\Delta AEK=\Delta BEK\)( cạnh góc vuông góc nhọn kề )
\(\Rightarrow AK=KB\)( cặp cạnh tương ứng bằng nhau )
b) Vì tam giác AEK = tam giác BEK ( cmt )
Suy ra AE = BE ( cặp cạnh tương ứng bằng nhau )
Xét hai tam giác vuông ACE và BDE có:
AE = BE ( cmt )
\(\widehat{AEC}=\widehat{BED}\)( đối đỉnh )
\(\Rightarrow\Delta ACE=\Delta BDE\)( cạnh huyền góc nhọn )
\(\Rightarrow CE=ED\)( cặp cạnh tương ứng )
Mà AE = BE ( cmt )
\(\Rightarrow CE+BE=ED+AE\)
\(\Rightarrow AD=BC\)
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥K và có ˆEAK=30o)
Tương tự, có ˆEBK=30o (vì ΔABC⊥C và có ˆA=60)
ˆKEB=60o
Xét hai tam giác vuông ΔAEK và ΔKEB có:
ˆAEK=ˆKEB=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90o
⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30o (cmt) ⇒ˆABD=60o (ΔADB⊥D)
Xét hai tam giác vuông ΔABC và ΔABD có:
ABAB chung
ˆBAC=ˆABD=60o ( gt + cmt)
ˆDAB=ˆABC=30o (g.c.g)
⇒ΔABC=ΔABD
⇒AD=BC (hai cạnh tương ứng)
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30oBAC^⇒EAK^=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥KΔAEK⊥K và có ˆEAK=30oEAK^=30o)
Tương tự, có ˆEBK=30oEBK^=30o (vì ΔABC⊥CΔABC⊥C và có ˆA=60oA^=60o)
ˆKEB=60oKEB^=60o
Xét hai tam giác vuông ΔAEKΔAEK và ΔKEBΔKEB có:
ˆAEK=ˆKEB=60oAEK^=KEB^=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90oEKB^=EKA^=90o
⇒ΔAEK=ΔBEK⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30oDAB^=30o (cmt) ⇒ˆABD=60o⇒ABD^=60o (ΔADB⊥DΔADB⊥D)
Xét hai tam giác vuông ΔABCΔABC và ΔABDΔABD có:
ABAB chung
ˆBAC=ˆABD=60oBAC^=ABD^=60o ( gt + cmt)
ˆDAB=ˆABC=30oDAB^=ABC^=30o (g.c.g)
⇒ΔABC=ΔABD⇒ΔABC=ΔABD
⇒AD=BC⇒AD=BC (hai cạnh tương ứng)
a ) xét tam giác ABC vuông tại C có góc A = 60 => góc B = 30 ( gt )
Mà EA là p/g góc BAC => góc BAE = 30
Nên => tam giác AEB cân tại E .
mà EK vuông AB => EK là đường cao tam giác cân AEB => EK là đường trung tuyến => K là trung điểm AB => AK = BK
b) xét tam giác BDA vuông tại D và tam giác ACB vuông tại C
Ta có : cạnh huyền AB chung
góc BAD = góc BCA ( cùng = 30 độ )
Nên tam giác BDA = tam giác ACB ( cạnh huyền-góc nhọn )
=> AD = BC ( hai cạnh tương ứng )
a) Xét tam giác AEK và tam giác AEC, có:
AE chung
Kˆ=Cˆ=900K^=C^=900
KAEˆ=CAEˆKAE^=CAE^ (AE là phân giác góc A)
⇒ΔAEK=ΔAEC(ch−gn)⇒ΔAEK=ΔAEC(ch−gn)
⇒AK=AC⇒AK=AC (Hai cạnh tương ứng)
Mà tam giác vuông ABC có: Aˆ=600A^=600
⇔AC=12BC⇔AC=12BC
⇔AK=12BC⇔AK=12BC
⇔AK=BK⇔AK=BK
b) Xét tam giác ABC và tam giác BAD, có:
BCAˆ=ABDˆ=900BCA^=ABD^=900
AB chung
CBAˆ=DABˆ=300CBA^=DAB^=300
⇔ΔABC=ΔBAD(ch−gn)⇔ΔABC=ΔBAD(ch−gn)
⇒AD=BC⇒AD=BC (Hai cạnh tương ứng)
Vậy ...