K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Vì |x|>=0

Nên x-2015=0 hoặc x-2017=0

x=0+2015 hoặc x=0+2017

x=2015 hoặc x=2017

23 tháng 4 2018

Với x < 2015 => x - 2015 <0; x - 2017 < 0 => |x-2015| = 2015 - x ; |x-2017| = 2017 - x

=> |x-2015| + |x-2017| = 2015 - x + 2017 - x = 4032 - 2x = 0 => x = 2016 (ko thỏa mãn đk x < 2015)  (1)

Với \(2015\le x< 2017\)=> x - 2015 \(\le\)0; x - 2017 < 0 => | x - 2015 | = x - 2015; | x - 2017 | = 2017 - x

=> |x - 2015| + |x-2017| = x - 2015 + 2017 - x = 0 -> Phương trình vô nghiệm (2)

Với \(x\ge2017\)=> x - 2015 > 0; x - 2017 \(\ge\)0 => |x - 2015 | = x - 2015; | x - 2017 | = x - 2017

=> |x-2015| + | x-2017| = x - 2015 + x - 2017 = 2x - 4032 = 0 => x = 2016 (ko thỏa mãn đk x >=2017) (3)

Từ (1); (2); (3) => Phương trình đã cho vô nghiệm

25 tháng 11 2015

Ta có: (x+2015)^2016>=0(với mọi x)

|y-2017|>=0(với mọi y)

Do đó, (x+2015)^2016+|y-2017|>=0(với mọi x,y)

mà (x+2015)^2016+|y-2017|=0

nên (x+2015)^2016=0                 và |y-2017|=0

      x+2015=0                              y-2017=0

      x=0-2015                              y=0+2017

      x=-2015                               y=2017

Vậy x=-2015 và y=2017 thì x,y thỏa mãn đề

21 tháng 10 2016

vì giá trị tuyệt đối không nhận giá trị âm nên

x-2015=0;x-2016=0;y2017=0;y-2018=0

=>x=2015;x=2016;y=2017;y=2018

Vì x và y không nhận hai giá trị cùng một lúc nên x y không tồn tại

 

14 tháng 11 2017

\(\frac{x+2015}{x-2015}=\frac{y+2017}{y-2017}\)

\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)-\left(x-2015\right)}{\left(y+2017\right)-\left(y-2017\right)}=\frac{2015}{2017}\)( 1 )

\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)+\left(x-2015\right)}{\left(y+2017\right)+\left(y-2017\right)}=\frac{x}{y}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{y}=\frac{2015}{2017}\)

9 tháng 6 2016

(x+y+z)^2=0

x^2+y^2+z^2+2xy +2yz+2xz=0

x^2+y^2+z^2+2(xy+yz+xz)=0

Vì xy + yz +xz=0 nên x^2+y^2+z^2=0.

Vì x^2, y^2, z^2 luôn lớn hơn hoặc bằng 0 mà x^2+y^2+z^2=0.Vì vậy:

x^2=0, y^2=0, z^2=0

x=y=z=0

Thay x=y=z=o vào S ta được: S=1

21 tháng 3 2020

\(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}\)

\(\Leftrightarrow\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}-\frac{x+2015}{5}-\frac{x+2016}{4}-\frac{x+2017}{3}=0\)

\(\Leftrightarrow\left(\frac{x+5}{2015}+1\right)+\left(\frac{x+4}{2016}+1\right)+\left(\frac{x+3}{2017}+1\right)-\left(\frac{x+2015}{5}+1\right)-\left(\frac{x+2016}{4}+1\right)\)

\(-\left(\frac{x+2017}{3}+1\right)=0\)

\(\Leftrightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{5}-\frac{x+2020}{4}-\frac{x+2020}{3}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow x+2020=0\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)

<=> x=-2020

Vậy x=-2020

10 tháng 6 2020

Giải phương trình: (3x-2)(x-1)^2(3x+8)=-16

a: \(\dfrac{x-5}{x-3}>0\)

=>x-5>0 hoặc x-3<0

=>x>5 hoặc x<3

b: \(\dfrac{x+8}{x-9}< 0\)

=>x+8>0 và x-9<0

=>-8<x<9

c: \(\dfrac{x+1}{2017}+\dfrac{x+2}{2016}+\dfrac{x+3}{2015}+\dfrac{x+4}{2014}+4=0\)

\(\Leftrightarrow\left(\dfrac{x+1}{2017}+1\right)+\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+3}{2015}+1\right)+\left(\dfrac{x+4}{2014}+1\right)=0\)

=>x+2018=0

hay x=-2018