Giúp mk với:
1) Cho 4 điểm bất kì trong đó không có 3 điểm nào thẳng hàng, số tam giác nhân các điểm đã cho làm đỉnh có được nhiều nhất là:
A.4 B.5 C.6 D.8
2) Tìm a € N để biểu thức sau có giá trị nguyên \(\frac{40\left|2a-1\right|+15}{10a-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn 3 điểm trong 15 điểm có: \(C^3_{15}\)(cách chọn)
Chọn 3 điểm trong 6 điểm thẳng hàng có:\(C^3_6\)(cách)
=>Số tam giác được tạo thành từ 15 điểm đã cho là: \(C^3_{15}-C^3_6\)(tam giác)
Có bốn tam giác thỏa mãn yêu cầu đề bài, tên các tam giác đó là:
Tam giác ABC, tam giác CAD, tam giác BCD và tam giác ABD
cứ 2 điểm tạo với 8 điểm còn lại 8 tam giác
vậy 10 điểm tạo với các điểm còn lại (10:2).8=40 tam giác
n điểm có (n:2)(n-2) tam giác
Câu 1:
Trong 4 điểm ta chọn được 4 điểm làm đỉnh thứ nhất của tam giác, sau đó ta còn 3 điểm cho đỉnh thứ hai và 2 điểm cho đỉnh thứ ba.
Mà nếu như vậy thì mỗi tam giác bị lặp lại đúng sáu lần. Cho nên ta có công thức tính tam giác là:
\(\frac{4.3.2}{6}=\frac{24}{6}=4\)( tam giác )
Mình không hiểu rõ câu hỏi của cậu lắm nên cứ đọc đỡ tham khảo cách tính tam giác của mình nhé!
Câu 2
Vì \(|2a-1|\ge0\)với mọi a.
=> \(2a-1< 0\)hoặc \(2a-1\ge0\)
Vậy ta có hai trường hợp
TH1: Nếu 2a - 1 < 0 ( với ĐK: a <1/2 )
=> \(\frac{40|2a-1|+15}{10a-5}=\frac{40\left(-2a+1\right)+15}{10a-5}\)
\(=\frac{-40\left(2a-1\right)+15}{10a-5}\)
\(=\frac{-40\left(2a-1\right)+15}{5\left(2a-1\right)}\)
\(=\frac{-40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)
\(=-8+\frac{3}{2a-1}\)
Vì -8 thuộc Z
=> Để biểu thức trên có giá trị nguyên thì \(\frac{3}{2a-1}\)phải thuộc Z.
=> \(3⋮2a-1\)
=> 2a -1 thuộc Ư(3)
=> 2a - 1 thuộc { 1;-1;3;-3 }
=> 2a thuộc { 2;0;4;-2}
=> a thuộc { 1;0;2;-1 }
Đối chiếu với ĐK a < 1/2 thì chỉ có 0 và -1 thỏa mãn
=> x = 0 ; x = -1
TH2: Nếu \(2a-1\ge0\)( với ĐK: a > hoặc bằng 1/2 )
\(=>\frac{40|2a-1|+15}{10a-5}=\frac{40\left(2a-1\right)+15}{5\left(2a-1\right)}\)
\(=\frac{40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)
\(=8+\frac{3}{2a-1}\)
Vì 8 thuộc Z
=> Để biểu thức trên có giá trị nguyên thì 3/2a-1 phải thuộc Z
=> 3 chia hết cho 2a - 1
=> 2a-1 thuộc Ư(3)
=> 2a - 1 thuộc { 1;-1;3;-3 }
=> 2a thuộc { 2;0;4;-2}
=> a thuộc {1;0;2;-1}
Đối chiếu điều kiện a lớn hơn hoặc bằng 1/2 thì 1 và 2 thỏa mãn.
1) đáp án D
2) mình hôm nay lười lắm éo muốn làm thông cảm