Tìm GTNN của
A=X2 - 2X + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a: Ta có: \(A=x^2+2x+5\)
\(=x^2+2x+1+4\)
\(=\left(x+1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=-1
\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)
dấu'=' xảy ra<=>x=1=>Max A=6
\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)
\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)
dấu"=" xảy ra<=>x=y=2=>Max B=10
\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
dấu'=' xảy ra<=>x=1,y=-3=>MinC=2
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)62`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)^2`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
\(S=\dfrac{2018x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017x^2+x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017}{2018}+\dfrac{\left(x-2018\right)^2}{x^2}\ge\dfrac{2017}{2018}\)
\(S_{min}=\dfrac{2017}{2018}\) khi \(x=2018\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
= X^2 - 2X+1 +2 = (X-1)^2 +2 \(\ge2\)
Dấu = xảy ra <=> x-1 = 0 => x=1
Vậy min A = 2 khi x=1