Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì bài dài nên mk làm hơi tắt tí nhé có chỗ nào ko hiểu thì nhắn lại với mình :))
1) Ta thấy:\(5+\left|x-2\right|\le5+0=5\)\(B=8-\left|x+3\right|\le8-0=8\)
Vậy MaxA=5<=>x=2
2) Ta thấy:\(B=8-\left|x+3\right|\le8-0=8\)
Vậy MaxB=8<=>x=-3
3) Ta thấy:\(2\left|x-3\right|+5\ge0+5=5\)
Vậy MinC=5<=>x=3
4)Ta thấy:\(6-3\left|2x-1\right|\le6-0=6\)
Vậy MaxD=6<=>x=1/2
5)mấy câu 5,6,7 bạn dùng BĐT |a|+|b|>=|a+b| nhé
\(E=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=7\)
Vậy MinE=7<=>x=2 hoặc 5
6)\(F=\left|7-x\right|+\left|x+1\right|\ge\left|7-x+x+1\right|=8\)
Vậy MinF=8<=>x=7 hoặc -1
7)\(H=\left|x+3\right|+\left|x-2\right|\ge\left|x+3-x-2\right|=1\)
Vậy MinH=1<=>x=-3 hoặc 2
8) I=|7-1|+|-2-1|
I=9 (đề bắt tìm Min và Max sao câu này ko có x nhỉ )
c, Vì |4 - 1/2x| > 0
=> |4 - 1/2x| - 1/4 > -1/4
=> C > -1/4
Dấu "=" xảy ra
<=> |4 - 1/2x| = 0
<=> 4 - 1/2x = 0
<=> 1/2x = 4
<=> x = 8
KL: Cmin = -1/4 <=> x = 8
a) Do: |6 - 2x| \(\ge\)0 nên A = |6 - 2x| - 5 \(\ge\)0 - 5 = -5
Dấu"=" xảy ra khi: |6 - 2x| = 0 => x = 3
Vậy GTNN của A là -5 khi x = 3
b) Ta có: |x + 1|\(\ge\)0 hay - |x + 1|\(\le\)0 nên B = 3 - |x + 1| \(\le\)3 - 0 = 3
Dấu "=" xảy ra khi: |x + 1| = 0 => x = -1
Vậy GTLN của B là 3 khi x = - 1
c) Ta có: (x + 1)2 \(\ge\)0 nên - (x + 1)2 \(\le\)0 (1)
|2 - y|\(\ge\)0 nên -|2 - y| \(\le\)0 (2)
Từ (1) và (2) => C = -(x + 1)2 - |2 - y| + 11 \(\le\)11
Dấu "=" xảy ra khi: (x + 1)2 = 0 và |2 - y| = 0 => x = -1 và y = 2
Vậy GTLN của C là 11 khi x = -1 và y = 2
d) Do: (x + 5)2 \(\ge\)0 và (2y - 6)2 \(\ge\)0
Nên: D = (x + 5)2 + (2y - 6)2 + 1 \(\ge\)1
Dấu "=" xảy ra khi: (x + 5)2 = 0 và (2y - 6)2 = 0 => x = -5 và y = 3
Vậy GTNN của D là 1 khi x = -5 và y = 3
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
Lời giải:
a. $15-(-2x)=22+3x$
$15+2x=22+3x$
$15-22=3x-2x$
$-7=x$
b.
$5(17-3x)+24=4$
$5(17-3x)=4-24=-20$
$17-3x=-20:5=-4$
$3x=17-(-4)=21$
$x=21:3=7$
c.
$42:(x^2+5)=3$
$x^2+5=42:3=14$
$x^2=14-5=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $x=-3$
d.
$73-3x^2=5^6:(-5)^4=(-5)^6:(-5)^4=(-5)^2=25$
$3x^2=73-25=48$
$x^2=48:3=16=4^2=(-4)^2$
$\Rightarrow x=4$ hoặc $x=-4$
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
thử hỏi dạng toán lớp 8 cho lớp 6 ai ngờ làm đc ;-;;