Cho hàm số y = (k + 2)x2 có đồ thị cắt đường thẳng y - 2x + 3 = 0 tại điểm A(1; a). Xác định a và k.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi A (2; yA) là giao điểm của đường thẳng y = ax - 4 và đường thẳng y = 2x - 1
A thuộc y = 2x - 1 nên
Thay x = 2 vào hàm số y = 2x - 1 ta được:
y = 2.2 - 1
y = 4 - 1 = 3
Vậy A(2;3)
A thuộc y = ax - 4 nên
Thay x = 2, y = 3 vào hàm số y = ax - 4 ta được:
3 = a.2 - 4
=> a.2 = 3+4
<=> 2a = 7
<=> a = 3,5
Vậy: a = 3,5
b) Gọi B(xB; 5) là giao điểm của đường thẳng y = ax - 4 với đường thẳng y = 3x + 2
B thuộc y = 3x + 2 nên
Thay y = 5 vào hàm số y = 3x + 2 ta được:
5 = 3x + 2
<=> 3x = 5-2 = 3
<=> x = 1
Vậy B(1;5)
B thuộc y = ax - 4 nên
Thay x = 1, y = 5 vào hàm số y = ax - 4 ta được:
5 = a.1 - 4
<=> a = 5 + 4 = 9
Vậy a = 9
a) Thay x = 2 vào hàm số y = 2x - 1
Ta có:
y = 2.2 - 1 = 3
Thay x = 2; y = 3 vào hàm số y = ax - 4 ta được:
a.2 - 4 = 3
⇔ 2a = 3 + 4
⇔ 2a = 7
⇔ a = 7/2
b) Thay y = 5 vào hàm số y = 3x + 2 ta được:
3x + 2 = 5
⇔ 3x = 5 - 2
⇔ 3x = 3
⇔ x = 3 : 3
⇔ x = 1
Thay x = 1; y = 5 vào hàm số y = ax - 4 ta được:
⇔ a.1 - 4 = 5
⇔ a = 5 + 4
⇔ a = 9
Điểm A thuộc đồ thị hàm số y = -2x + 3 nên tọa độ A nghiệm đúng phương trình đường thẳng.
Ta có : y = -2.1 + 3 = 1
Vậy điểm A(1 ; 1)
Điểm A(1 ; 1) thuộc đồ thị hàm số y = a x 2 nên tọa độ A nghiệm đúng phương trình hàm số.
Ta có : 1 = a. 1 2 ⇔ a = 1
Vậy hàm số đã cho là y = x 2
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
Phương trình đường thẳng d: y = kx − 3
Phương trình hoành độ giao điểm của (P) và d : - x 2 + 4 x - 3 = k x - 3
⇔ - x 2 + 4 - k x = 0 ⇔ x - x + 4 - k = 0 1
d cắt đồ thị (P) tại 2 điểm phân biệt khi (1) có 2 nghiệm phân biệt ⇔ 4 - k ≠ 0 ⇔ k ≠ 4
Ta có E x 1 ; k x 1 − 3 , F x 2 ; k x 2 − 3 với x 1 , x 2 là nghiệm phương trình (1)
Δ O E F vuông tại O ⇒ O E → . O F → = 0 ⇔ x 1 . x 2 + k x 1 − 3 k x 2 − 3 = 0
⇔ x 1 . x 2 1 + k 2 − 3 k x 1 + x 2 + 9 = 0 ⇔ 0. 1 + k 2 − 3 k ( 4 − k ) + 9 = 0
⇔ k 2 − 4 k + 3 = 0 ⇔ k = 1 k = 3
Đáp án cần chọn là: D
Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )
Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1
=> y=kx-1(d)
Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:
-x^2=kx-1
<=> x^2-kx-1=0 (1)
Xét phương trình có a=1;c=-1 => ac=-1 <0
=> (1) luôn có 2 nghiệm phân biệt
=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
\(a,\Leftrightarrow A\left(0;4\right)\in\left(1\right)\Leftrightarrow k=4\\ b,\Leftrightarrow B\left(-3;0\right)\in\left(1\right)\Leftrightarrow3\left(2-k\right)+k=0\Leftrightarrow6-2k=0\Leftrightarrow k=3\\ c,\Leftrightarrow\left\{{}\begin{matrix}k-2=-3\\k\ne1\end{matrix}\right.\Leftrightarrow k=-1\\ d,\Leftrightarrow2\left(k-2\right)=-1\Leftrightarrow k-2=-\dfrac{1}{2}\Leftrightarrow k=\dfrac{3}{2}\)
Hàm số y = ax - 4 là hàm số bậc nhất nên a ≠ 0
a) Đồ thị hàm số y = ax – 4 cắt đường thẳng y = 2x – 1 tại điểm có hoành độ bằng 2 nên thay x = 2 vào phương trình hoành độ giao điểm ta có:
2a – 4 = 2.2 – 1 ⇔ 2a = 7 ⇔ a = 3,5
Kết hợp với điều kiện trên ta thấy a = 3,5 là giá trị cần tìm.
b) Đồ thị hàm số y = ax – 4 cắt đường thẳng y = -3x + 2 tại điểm A có tung độ bằng 5 nên đường thẳng y = -3x + 2 đi qua điểm có tung độ bằng 5. Thay tung độ vào phương trình đường thẳng ta được hoành độ của giao điểm A là:
5 = -3x + 2 ⇔ - 3x = 3 ⇔ x = -1
Ta được A(-1; 5).
Đường thẳng y = ax – 4 cũng đi qua điểm A(-1; 5) nên ta có:
5 = a.(-1) – 4 ⇔ -a = 9 ⇔ a = -9
Kết hợp với điều kiện trên ta thấy a = -9 là giá trị cần tìm.