K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

\\(C=\frac{9x^2-6x+4}{9x^2-6x+2}-1=\frac{\left(3x-2\right)^2}{9x^2-6x+2}-1\ge1\)

Do đó min C =1 khi x=2/3

21 tháng 4 2018

\(A=2x^2-8x+1\)

\(A=2\left(x^2-4x+\frac{1}{2}\right)\)

\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)

\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)

\(A=2\left(x-2\right)^2-7\ge7\forall x\)

dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

vậy MIN A = 7 khi \(x=2\)

\(B=-5x^2-4x+1\)

\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)

\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)

\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)

dấu \("="\)  xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)

vậy MIn B = \(\frac{9}{5}\)  khi \(x=\frac{-2}{5}\)

còn lại làm tương tự nhé 

21 tháng 4 2018

Ta có : 

\(A=2x^2-8x+1\)

\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)

\(A=2\left(x^2-4x+4\right)-7\)

\(A=2\left(x-2\right)^2-7\ge-7\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)

Chúc bạn học tốt ~ 

17 tháng 2 2020

Ta có : \(C=\frac{2}{6x-5-9x^2}\)

\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)

\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)

Để C đạt giá trị nhỏ nhất

\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất

Ta có : \(\left(3x-1\right)^2+4\ge4\)

Dấu " = " xảy ra : 

\(\Leftrightarrow3x-1=0\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

27 tháng 6 2020

Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?

15 tháng 9 2021

1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)

\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)

2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

\(maxM=6\Leftrightarrow x=-1\)

3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)

\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)

15 tháng 9 2021

u là trời, cảm ơn bạn nhé:3

22 tháng 8 2021

\(a,ĐK:9x^2-1\ne0\Leftrightarrow x^2\ne\frac{1}{9}\Leftrightarrow x\ne\pm\frac{1}{3}\)

\(b,M=\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)

với \(3x-1>0\) ta có \(M=\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)

với \(3x-1< 0\) ta có \(M=\frac{-\left(3x-1\right)}{\left(3x-1\right)\left(3x+1\right)}=-\frac{1}{3x+1}\)

\(c,\) th1 : \(M=\frac{1}{3x+1}\)  khi \(x>\frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{3x+1}=\frac{1}{4}\Leftrightarrow x=1\left(thoaman\right)\) 

th2 : \(M=-\frac{1}{3x+1}\) khi \(x< \frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{-1}{3x+1}=\frac{1}{4}\Leftrightarrow3x+1=-4\Leftrightarrow x=-\frac{5}{3}\left(thoaman\right)\)

\(d,M=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}< 0\) có \(\left|3x-1\right|>0\)

\(\Rightarrow\left(3x-1\right)\left(3x+1\right)< 0\)

th1 : \(\hept{\begin{cases}3x-1>0\\3x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{3}\\x< -\frac{1}{3}\end{cases}\left(voli\right)}}\)

th2 : \(\hept{\begin{cases}3x-1< 0\\3x+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{3}\\x>-\frac{1}{3}\end{cases}\Leftrightarrow-\frac{1}{3}< x< \frac{1}{3}}\)

30 tháng 4 2016

để A nhỏ nhất thì 6x - 5 - 9x2 lớn nhất

ta có 6x - 5 - 9x2 = - ( 9x2 - 6x + 5 )

                         = -( 3x - 1 ) 2 + 4

                        = 4 - (3x - 1 )2

ta có (3x - 1)2 lớn hơn hoặc = 0 với mọi x 

trường hợp dấu bằng xảy ra cũng là trường hợp để 4 - (3x - 1 )2 lớn nhất

ta có  với (3x -1)2 = 0 tức x = 1/3 thì 4 - (3x - 1 )2 = 4

khi đó A = \(\frac{2}{6x-5-9x^2}=\frac{2}{4}=\frac{1}{2}\)

vậy A nhỏ nhất = 1/2 khi và chỉ khi x=1/3

15 tháng 12 2016

a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)

A xác định khi 3x-1 #0 <=> x khác 1/3

b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)

c/ A\(\le0\)Khi:

+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)

+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp

Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)

15 tháng 12 2016

a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)

Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)

b, Ta thay x=8

\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)

c, x<0

\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)

Ta có: \(E=9x^2+6x-1\)

\(=9x^2+6x+1-2\)

\(=\left(3x+1\right)^2-2\ge-2\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{3}\)

3 tháng 8 2021

\(F=\left(3x\right)^2+2.3x.1+1-2=\left(3x+1\right)^2-2\ge-2\)

Dấu = xảy ra ⇔ \(3x+1=0\Rightarrow x=\dfrac{-1}{3}\)

Vậy min của F là -2