Cho a/(x+y)=13/(x+z) và 169/(x+z)^2=-27/(z-y)((2x+y+z)
Tính A=(2a^3-12a^2+17a-2)/(a-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x+y=m\\x+z=n\end{cases}\left(m,n\ne0\right)}\). Khi đó giả thiết trở thành:
\(\hept{\begin{cases}\frac{a}{m}=\frac{13}{n}\left(1\right)\\\frac{169}{n^2}=\frac{27}{\left(m-n\right)\left(m+n\right)}\left(2\right)\end{cases}}\)
Từ đẳng thức (2) suy ra \(\frac{169}{n^2}=\frac{27}{m^2-n^2}\Rightarrow169m^2=196n^2\Leftrightarrow\orbr{\begin{cases}13m=14n\\13m=-14n\end{cases}}\)(Vì m,n khác 0)
Do đó \(\orbr{\begin{cases}\frac{m}{n}=\frac{14}{13}\\\frac{m}{n}=-\frac{14}{13}\end{cases}}\). Chú ý tới (1) ta có \(\orbr{\begin{cases}a=13.\frac{m}{n}=13.\frac{14}{13}=14\\a=-14\end{cases}}\)
Ta lại có: \(E=\frac{\left(2a^3-4a^2\right)-\left(8a^2-16a\right)+\left(a-2\right)}{a-2}=2a^2-8a+1\)
Thay \(a=14\) vào biểu thức E ta được \(E=2.14^2-8.14+1=281\)
Thay \(a=-14\)vào biểu thức E ta được \(E=2.\left(-14\right)^2-8.\left(-14\right)+1=505\)
Vậy \(E=281\)hoặc \(E=505.\)
a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)
\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)
Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)
nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)
mà a+b+c=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)
Vậy: \(a=\dfrac{16}{35}\); \(b=\dfrac{24}{35}\); \(c=\dfrac{6}{7}\)
b) Ta có: 2a=3b=5c
nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)
mà a+b-c=3
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)
Do đó:
\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)
Vậy: \(a=\dfrac{45}{19}\); \(b=\dfrac{30}{19}\); \(c=\dfrac{18}{19}\)