-5.(x+1/5)-1/2.(x-2/3)=3/2.x5/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{3}{5}-x\right)+\frac{13}{20}=\frac{5}{6}\)
\(\frac{3}{5}-x=\frac{5}{6}-\frac{13}{20}\)
\(\frac{3}{5}-x=\frac{11}{60}\)
\(x=\frac{3}{5}-\frac{11}{60}\)
\(x=\frac{5}{12}\)
\(\left(x-\frac{1}{2}\right)\cdot\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\left(x-\frac{1}{2}\right)\cdot\frac{5}{3}=\frac{5}{4}\)
\(x-\frac{1}{2}=\frac{5}{4}:\frac{5}{3}\)
\(x-\frac{1}{2}=\frac{3}{4}\)
\(x=\frac{3}{4}+\frac{1}{2}\)
\(x=\frac{5}{4}\)
( 3/5 - x ) + 13/20 = 5/6
3/5 - x = 5/6 - 13/20
3/5 - x = 89/60
x = 3/5 - 89/60
x = 25/12
( x - 1/2 ) x 5/3 = 7/4 - 1/2
( x - 1/2 ) x 5/3 = 5/4
x - 1/2 = 5/4 : 5/3
x - 1/2 = 35/12
x = 35/12 + 1/2
x = 41/12
1) = \(\frac{3}{5}\)
2) =\(\frac{6}{7}\)
3)\(\frac{9}{13}\)
4)\(\frac{4}{13}\)
a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)
=> x=-1
với \(3x^2+x-2=0\)
ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)
Vậy ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
hay \(x\in\left\{1;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)