K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

Bài trên là câu e) của bài làm các câu còn lại (đã làm)gồm:

A)Chứng minh[CM] \(\Delta ABC\)đồng dạng \(\Delta HBA\)

b)Tính BC, HB, HC

c) Tính diện tích \(\Delta ABC\)

d) CM AH=HB.HC

e) Tia phân giác.......(phần trên mình có ghi)

MONG GIÚP ĐỠ THỨ 2 LÀ GIẢI RỒI, LÀM GIÚP MÌNH NHA, CHƯA HIỂU CÂU (E) CHO LẮM

28 tháng 4

Hình đâu 

19 tháng 5 2022

a) Xét tam giác vuông ABC 

Theo định lý Py-ta-go ta có :

AB2 + AC2 = BC2

=> 62 + 82 = BC2

=> 36 + 64 = BC2

=> 100 = BC2

=> BC = 10cm

8 tháng 5 2016

??????

20 tháng 8 2016

bài này mình học

rùi nhưng ko nhớ

4 tháng 5 2022

db

 

 

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

22 tháng 2 2020

a)Xét tam giác ABC vuông tại A(gt),có:

AB^2+AC^2=BC^2(Đl pytago)

Thay số:36+64=BC^2

=>BC= căn 100=10cm

Xét tam giác ABC có BD là phân giác góc ABC(gt),có:

AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)

<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)

Thay số:6/16=AD/8

<=>16AD=48

<=>AD=3cm

Vì D thuộc AC(gt)

=>AD+DC=AC

Thay số:3+DC=8

<=>DC=5cm

b) Xét tam giác ABC vuông tại A(gt),có:

SABC=(AB.AC)/2=24cm^2

Mà SABC=(AH.BC)/2

=>(AH.10)/2=24

<=>AH=24.2÷10=4,8cm

Xét tam giác ABC đồng dạng tam giác HAC có:

+Góc C chung

+Góc AHC=góc BAC=90 độ

=>tam giác ABC đồng dạng tam giác HAC(g.g)

=> AH/AB=CH/AC(Cặp cạnh tương ứng)

Thay số : 4,8/6=CH/8

=>CH=4,8.8÷6=6,4cm

c)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{BA}{BC}=\dfrac{HB}{AB}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{HB}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}HB=\dfrac{9}{5}=1.8\left(cm\right)\\AH=\dfrac{12}{5}=2.4\left(cm\right)\end{matrix}\right.\)

Vậy: BC=5cm; AH=2,4cm; HB=1,8cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)