Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác FHI ta có:
FK là đường trung tuyến suy ra
=>KH=KI ( định lý)
Ta có ; KH+ KI =HI=56 cm
mà KH = Ki (cmt)
=> KH=KI= \(\dfrac{56}{2}=28cm\)
Áp dụng định lý Py-ta-go vào tam giác FHI ta có
KF^2+KH^2=FH^2
hay 45^2+28^2= FH^2
=> FH^2=45^2+28^2=2025+784=2809
=> FH=√2809= 53
=>FH=53 cm
refer
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) HB=HC=BC2=102=5cmHB=HC=BC2=102=5cm
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: AB2=AH2+BI2AB2=AH2+BI2
hay:132=AH2+52132=AH2+52
⇒AH2=132−52⇒AH2=132−52
⇔AH=√132−52=12⇔AH=132−52=12
Vậy AH=12cm
a, Xét Δ AHB và Δ AHC, có :
AH là cạnh chung
AB = AC (Δ ABC cân tại A)
HB = HC (AH là đường trung tuyến của BC)
=> Δ AHB = Δ AHC (c.c.c)
b, Xét Δ ABC cân tại A, có :
AH là đường trung tuyến
=> AH là đường cao
=> \(\widehat{AHC}=\widehat{AHB}=90^o\)
c, đề kì dzậy
a: Xét ΔABC có
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
Do đó: DE//BC
Xét tứ giác BCED có DE//BC
nên BCDE là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BCDE là hình thang cân
Bạn tự vẽ hình nhé
Giải
Ta có : \(\Delta FHI\)cân tại F ( gt ) ; FK là đường trung tuyến \(\Delta FHI\) ( gt )
\(\Rightarrow\)FK đồng thời là đường cao \(\Delta FHI\) ( t/c tam giác cân )
\(\Rightarrow\)FK \(\perp\) HI
\(\Rightarrow\)\(\Delta FIK\)là tam giác vuông tại K
Mà FK là trung tuyến => HK = KI = \(\frac{HI}{2}\) = 18 cm
Xét \(\Delta FIK\) vuông tại K ( cmt ) , có :
FI2 = FK2 + KI2 ( đ/l Py-ta-go )
=> FI2 = 242 + 182
=> FI2 = 576 + 324
=> FI2 = 900
=> FI = 30 cm ( FI > 0 )
Vậy độ dài cạnh FI là 30 cm ( đpcm )