K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

\(M=\)như trên

\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)

\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có: 

\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)

=>minM=2011 khi x=\(\frac{1}{2}\)

12 tháng 10 2019

Đáp án B

Từ giả thiết

2017 1 − y 2017 x = x 2 + 2018 1 − y 2 + 2018 ⇔ 2017 1 − y 1 − y 2 + 2018 = 2017 x x 2 + 2018   *  

Xét hàm số f t = 2017 t t 2 + 2018  với t ∈ 0 ; 1  

⇒ f ' t = 2017 t ln 2017 t 2 + 2018 + 2 t .2017 t > 0  

⇒ f t đồng biến trên 0 ; 1 .  Do đó (*)  ⇔ 1 − y = x ⇔ x + y = 1.

Ta có: 0 ≤ x y ≤ x + y 2 4 = 1 4 .  Đặt  m = x y ∈ 0 ; 1 4 . Khi đó :

S = 16 x 2 y 2 + 34 x y + 12 y + x y + x 2 − 3 x y = 16 m 2 − 2 m + 12 = g m  

Xét hàm g m  trên đoạn

0 ; 1 4 ⇒ g ' m = 32 m − 2 → g ' m = 0 ⇔ m = 1 16  

Lúc này

g 0 = 12 , g 1 4 = 25 2 , g 1 16 = 191 16 ⇒ M = 25 2 m = 191 16 ⇒ M + m = 391 16 .

15 tháng 2 2017

Đáp án B

Từ giả thiết

Xét hàm số

Do đó  (*)

Xét hàm g(m) trên đoạn

Lúc này

14 tháng 1 2017

Chọn D

18 tháng 12 2018

Đáp án B

Ta có  2017 1 − x − y = x 2 + 2018 y 2 − 2 y + 2019 ⇔ 2017 1 − y 2017 x = x 2 + 2018 1 − y 2 + 2018

2017 x x 2 + 2018 = 2017 1 − y 1 − y 2 + 2018 ⇔ f x = f 1 − y

Xét hàm số f t = 2017 t t 2 + 2018 = t 2 .2017 t + 2018.2017 t , có

                  f ' t = 2 t .2017 t + t 2 .2017 t . ln 2017 + 2018.2017 t . ln 2017 > 0 ; ∀ t > 0

Suy ra f(t) là hàm đồng biến trên 0 ; + ∞  mà  f x = f 1 − y ⇒ x + y = 1

Lại có  P = 4 x 2 + 3 y 4 y 2 + 3 x + 25 x y = 16 x 2 y 2 + 12 x 3 + 12 y 3 + 34 x y

16 x 2 y 2 + 12 x + y 3 − 3 x y x + y + 34 x y = 16 x 2 y 2 + 12 1 − 3 x y + 34 x y = 16 x 2 y 2 − 2 x y + 12

Mà 1 = x + y ≥ 2 x y ⇔ x y ≤ 1 4  nên đặt t = x y ∈ 0 ; 1 4 khi đó  P = f t = 16 t 2 − 2 t + 12

Xét hàm số f t = 16 t 2 − 2 y + 12  trên 0 ; 1 4  ta được  min 0 ; 1 4 f t = f 1 16 = 191 16 max 0 ; 1 4 f t = f 1 4 = 25 2

1 tháng 1 2020

Lâu rồi không show cách này:)

Sửa đề: \(M=4x^2-3x+\frac{1}{4x}+2017\)

Ta có: \(M=\frac{\left(4x+1\right)\left(2x-1\right)^2}{4x}+2017\ge2017\)

Đẳng thức xảy ra khi \(x=\frac{1}{2}\)

31 tháng 12 2019

Em kiểm tra lại đề nhé! Hàm số của biểu thức : \(M=4^2-3x+\frac{1}{4x}+2017\) có đồ thị đi xuống nên sẽ không tồn tại GTNN em nhé!

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:

Áp dụng BĐT AM-GM cho các số dương ta có:
$3x^2+\frac{3}{4}\geq 3x$

$x^2+\frac{1}{8x}+\frac{1}{8x}\geq 3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}=\frac{3}{4}$

Cộng theo vế:

$\Rightarrow 4x^2+\frac{1}{4x}+\frac{3}{4}\geq 3x+\frac{3}{4}$

$\Rightarrow 4x^2+\frac{1}{4x}\geq 3x$

$\Rightarrow M=4x^2+\frac{1}{4x}-3x+2011\geq 2011$

Vậy $M_{\min}=2011$ khi $x=\frac{1}{2}$

9 tháng 8 2016

(4x-4x+1) + (x+ \(\frac{1}{4x}\)-2)+ 2016=(2x-1)2 +(√x  -√ \(\frac{1}{4x}\))2 >=2016 đạt giá trị nhỏ nhất khi x=0,5