- 1/2*x+2/3*(x-1)=1/3
- 2*x^2-72=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x-2=-6\)
\(x=-6+2\)
\(x=-4\)
b) \(15-\left(x-7\right)=-21\)
\(x-7=36\)
\(x=43\)
c) \(4.\left(3x-4\right)-2=18\)
\(4\left(3x-4\right)=20\)
\(3x-4=5\)
\(3x=9\)
\(x=3\)
d) \(\left(3x-6\right)+3=32\)
\(3x-6=29\)
\(3x=29+6\)
\(3x=35\)
\(x=\frac{35}{3}\)
e) \(\left(3x-6\right).3=32\)
\(3x-6=\frac{32}{3}\)
\(3x=\frac{32}{3}+6\)
\(3x=\frac{50}{3}\)
\(x=\frac{50}{9}\)
f) \(\left(3x-6\right):3=32\)
\(3x-6=96\)
\(3x=102\)
\(x=34\)
g) \(\left(3x-6\right)-3=32\)
\(3x-6=35\)
\(3x=41\)
\(x=\frac{41}{3}\)
h) \(\left(3x-2^4\right).7^3=2.7^4\)
\(\left(3x-2^4\right)=2.7=14\)
\(\left(3x-16\right)=14\)
\(3x=14+16=30\)
\(x=10\)
i) \(\left|x\right|=\left|-7\right|\)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
k) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
l) \(\left|x-2\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
m) \(x+\left|-2\right|=0\)
\(x+2=0\)
\(x=-2\)
o) \(72-3\left|x+1\right|=9\)
\(3\left|x-1\right|=63\)
\(\left|x-1\right|=21\)
\(\Rightarrow\orbr{\begin{cases}x-1=21\\x-1=-21\end{cases}\Rightarrow\orbr{\begin{cases}x=22\\x=-20\end{cases}}}\)
p) Ta có: \(\left|x-1\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
mà \(x+1< 0\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-2\)
q) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
hok tốt!!
31x72 - 31x70 - 31 x 2 - 31
=31x(72 -70 -2 -1)
=31 x (-1)
= -31
những câu sau thì lam tương tự nha bạn ^_^
a) -45 : ( 3x - 17 ) = 32
3x - 17 = -45 : 9
3x - 17 = -5
3x = 12
x = 4
b) \(\left(2x-8\right)\left(-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-8=0\\-2x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy.....
a) \(\frac{3}{7}-\frac{1}{7}x=\frac{2}{3}\)
=> \(\frac{1}{7}x=\frac{3}{7}-\frac{2}{3}=-\frac{5}{21}\)
=> \(x=-\frac{5}{21}:\frac{1}{7}=-\frac{5}{21}\cdot7=-\frac{5}{3}\)
b) \(3x^2-2=72\)=> 3x2 = 74 => x2 = 74/3 => x không thỏa mãn
c) \(\left(19x+2\cdot5^2\right):14=\left(13-8\right)^2-4^2\)
=> \(\left(19x+2\cdot25\right):14=5^2-4^2=9\)
=> \(\left(19x+50\right):14=9\)
=> \(19x+50=126\)
=> \(19x=76\)
=> x = 4
d) \(x:\frac{1}{2}+x:\frac{1}{4}+x:\frac{1}{8}+x:\frac{1}{16}+x:\frac{1}{32}=343\)
=> \(x\cdot2+x\cdot4+x\cdot8+x\cdot16+x\cdot32=343\)
=> \(x\left(2+4+8+16+32\right)=343\)
=> x . 62 = 343
=> x = 343/62
a.\(\left(3x\right)^2-4\left(x-3\right)^2=0\)
<=> \(9x^2-4\left(x^2-6x+9\right)=0\)
<=> \(9x^2-4x^2+24x-36=0\)
<=>\(5x^2+24x-36=0\)
giải pt bậc hai thì pt có hai nghiệm x={1,2;-6}
a) (3x)2 - 4(x- 3)2 = 0
\(\Leftrightarrow\) (3x - 2x + 6)(3x + 2x - 6) = 0
\(\Leftrightarrow\) (x+ 6)(5x - 6) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+6=0\\5x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\x=\dfrac{6}{5}\end{matrix}\right.\)
Vậy phượng trình có tập nghiệm là: S = {-6;\(\dfrac{6}{5}\)}
b) x3 + x2 + 4 = 0
\(\Leftrightarrow\) x3 + 2x2 - x2 + 4 = 0
\(\Leftrightarrow\) (x3 + 2x2) - (x2 - 4) = 0
\(\Leftrightarrow\) x2(x + 2) - (x + 2)(x - 2) = 0
\(\Leftrightarrow\) (x2 - x + 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-x+2=0\left(vôli\right)\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) x = -2
Vậy phương trình có tập nghiệm là: S={-2}
c) (x - 1)2(x - 3) + (1 - x)2(x + 3) = 72
\(\Leftrightarrow\) (x - 1)2(x - 3) + (x - 1)2(x + 3) = 72
\(\Leftrightarrow\) (x - 1)2(x - 3 + x + 3) = 72
\(\Leftrightarrow\) 2x(x2 - 2x + 1) = 72
\(\Leftrightarrow\) 2x3 - 4x2 + 2x - 72 = 0
\(\Leftrightarrow\) 2(x3 - 2x2 + x - 36) = 0
\(\Leftrightarrow\) x3 - 2x2 + x - 36 = 0
\(\Leftrightarrow\) x3 - 4x2 + 2x2 - 8x + 9x - 36 = 0
\(\Leftrightarrow\) (x3 - 4x2) + (2x2 - 8x) + (9x - 36) = 0
\(\Leftrightarrow\) x2(x - 4) + 2x(x - 4) + 9(x - 4)= 0
\(\Leftrightarrow\) (x2 + 2x + 9)(x - 4) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2+2x+9=0\left(vôli\right)\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\) x = 4
Vậy phương trình có tập nghiệm là: S={4}
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
\(2x^2-72=0\Leftrightarrow2\left(x^2-36\right)=0\Leftrightarrow x^2=36\Leftrightarrow x=-6; x=6\)
\(\frac{1}{2}x+\frac{2}{3}\left(x-1\right)=\frac{1}{3}\)
\(\frac{1}{2}x+\frac{2}{3}x-\frac{2}{3}=\frac{1}{3}\)
\(\frac{7}{6}x=\frac{1}{3}+\frac{2}{3}\)
\(x=\frac{6}{7}\)