cho a,b là các số thực ko âm . Chứng minh : 3a3+17b3\(\ge\)18ab2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9}{4}=ab+a+b+1\le\dfrac{1}{4}\left(a+b\right)^2+a+b+1\)
\(\Leftrightarrow\left(a+b\right)^2+4\left(a+b\right)-5\ge0\)
\(\Leftrightarrow\left(a+b-1\right)\left(a+b+5\right)\ge0\)
\(\Leftrightarrow a+b-1\ge0\) (do \(a+b+5>0\))
\(\Rightarrow a+b\ge1\)
b.
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{2}.1^2=\dfrac{1}{2}\) (đpcm)
Giả sử \(c\le1\).
Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)
Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).
Theo giả thiết:
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)
\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.
Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).
\(\Rightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\)
\(\Leftrightarrow abc\ge ca+bc-c\)
\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.
ta có
\(a^3+b^3\ge a^2b+ab^2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) luôn đúng do a,b không âm
Nguyễn Minh Quang thầy thiếu dấu "=" xảy ra rồi
Đẳng thức xảy ra <=> a = b
Ta có:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(a^2b+ab^2=ab\left(a+b\right)\)
=> Ta cần chứng minh: \(a^2-ab+b^2\ge ab\) hay \(a^2+b^2\ge2ab\)
Ta có: \(a^2+b^2-2ab=a^2-2ab+b^2=\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2-ab+b^2\ge ab\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3\ge a^2b+ab^2\)
Vậy \(\Rightarrow a^3+b^3\ge a^2b+ab^2\)
\(VT=1+\dfrac{1}{1+a}+\dfrac{2}{1+2b}-1=2\left(\dfrac{1}{2+2a}+\dfrac{1}{1+2b}\right)\)
\(VT\ge\dfrac{8}{3+2\left(a+b\right)}\ge\dfrac{8}{3+2.2}=\dfrac{8}{7}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)
Đặt \(x=a+b;y=b+c,z=c+a\)
\(\Rightarrow x+y+z=2\)
Ta cần chứng minh:\(x+z\ge4xyz\)
Ta có:\(4\left(x+z\right)=\left(x+y+z\right)^2\left(x+z\right)\ge4y\left(x+z\right)\left(x+z\right)\)
\(=4y\left(x+z\right)^2\ge4y.4xz=16xyz\)
\(\Rightarrow\)\(x+z\ge4xyz\)
Hoàn tất chứng minh.Dấu "=" xảy ra khi \(x=z=\frac{1}{2};y=1\) thế vào tìm a,b,c
\(a^3+2b^3+c^3\ge b^2\left(a+c\right)+b\left(a^2+c^2\right)\)
\(\Leftrightarrow a^3+2b^3+c^3-b^2\left(a+c\right)-b\left(a^2+c^2\right)\ge0\)
\(\Leftrightarrow\left(a^3+b^3-b^2a-ab^2\right)+\left(c^3+b^3-b^2c-bc^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\)( đúng )
Vậy ta có ĐPCM