Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu phải sang bên toán hỏi kìa ..... Mà thoai giải đây nhé ..... Sau bạn tự rút kinh nghiệm ý.
Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\left(1\right)=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\begin{cases}abz-acy=0\\bcx-abz=0\\acy-bcx=0\end{cases}\)\(\Rightarrow\begin{cases}abz=acy\\bcx=abz\\acy=bcx\end{cases}\)\(\Rightarrow\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\)\(\Rightarrow\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\end{cases}\)\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thầy xem lại thì đây không phải chỗ để Vật lý nên không cần tick cũng được ạ.... cơ mà tick đc thì càng tốt *hì*
Quãng đường xe 1 đi từ A đến lúc 2xe gặp nhau là :
S1=v1.t(km)
Quãng đường xe 2 đi từ B đến lúc 2xe gặp nhau là :
S2=v2.t(km)
Vì 2xe đi nguộc chiều nhau nên :
S1+S2=AB
\(\Rightarrow v_1.t+v_2.t=s\)
\(\Rightarrow t\left(v_1+v_2\right)=s\)
\(\Rightarrow t=\frac{s}{v_1+v_2}\left(h\right)\)
gọi t là thời gian để hai xe chuyển động trên sab
quãng đường đi của xe 1 là:
s1=v1.t(km)
quãng đường đi của xe hai là:
s2=v2.t(km)
vì hai xe đi ngược chiều nhau lên
ta có s1+s2=s
<=>v1.t=v2.t=s
<=>(v1+v2).t=s
<=>t=s/v1+v2(h)
Bài 1:
Gọi S là độ dài \(\dfrac{1}{3}\)đoạn đường
\(\Rightarrow2S\) là độ dài đoạn đường còn lại.
Ta có:
\(V_{tb}=\dfrac{S+2S}{t_1+t_2}=\dfrac{3S}{t_1+t_2}=30\)(*)
Lại có:
\(t_1=\dfrac{S}{V_1}=\dfrac{S}{20}\)
\(t_2=\dfrac{2S}{V_2}\left(2\right)\)
Thay \(\left(1\right),\left(2\right)\) vào (*) ta được:
\(V_{tb}=\dfrac{3S}{t_1+t_2}=\dfrac{3S}{\dfrac{S}{20}+\dfrac{2S}{V_2}}=\dfrac{3}{\dfrac{1}{20}+\dfrac{2}{V_2}}=30\)
\(\Leftrightarrow\dfrac{1}{20}+\dfrac{2}{V_2}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{2}{V_2}=\dfrac{1}{20}\Leftrightarrow V_2=40\)(km/h)
Bài 2:
Gọi \(t\) là \(\dfrac{1}{2}\) thời gian
Ta có:
\(V_{tb}=\dfrac{S_1+S_2}{t+t}=\dfrac{S_1+S_2}{2t}\)(*)
\(S_1=V_1.t=25t\left(1\right)\)
\(S_1=V_2.t=35t\left(2\right)\)
Thay \(\left(1\right),\left(2\right)\) vào (*) ta được:
\(V_{tb}=\dfrac{S_1+S_2}{2t}=\dfrac{25t+35t}{2t}=30\)(km/h)
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng
ta có
\(a^3+b^3\ge a^2b+ab^2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) luôn đúng do a,b không âm
Nguyễn Minh Quang thầy thiếu dấu "=" xảy ra rồi
Đẳng thức xảy ra <=> a = b