Cho x2-mx-3=0.
Tìm m để thỏa mãn x21 + x22+x1+x2=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∆ = m 2 – 4 (n – 3) = m 2 – 4n + 12
Phương trình đã cho có hai nghiệm x 1 ; x 2 ⇔ ∆ ≥ 0 ⇔ m 2 – 4 n + 12 ≥ 0
Áp dụng định lý Vi-ét ta có x 1 + x 2 = − m ; x 1 . x 2 = n – 3
Ta có:
x 1 − x 2 = 1 x 1 2 − x 2 2 = 7 ⇔ x 1 − x 2 2 = 1 x 1 − x 2 x 1 + x 2 = 7 ⇔ x 1 + x 2 2 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7 ⇔ 49 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7 ⇔ x 1 . x 2 = 12 x 1 + x 2 = 7 ⇔ n − 3 = 12 − m = 7 ⇔ m = − 7 n = 15
Thử lại ta có: ∆ = ( − 7 ) 2 – 4.15 + 12 = 1 > 0 (tm)
Vậy m = −7; n = 15
Đáp án: C
\(\text{Δ}=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)
\(=4m^2-8m^2+16=-4m^2+16\)
Để phương trình có hai nghiệm thì (m-2)(m+2)<0
=>-2<m<2
Theo đề, ta có:
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2-1< 0\)
\(\Leftrightarrow\left(-m\right)^2-\dfrac{5}{2}\left(m^2-2\right)-1< 0\)
\(\Leftrightarrow m^2-\dfrac{5}{2}m^2+5-1< 0\)
\(\Leftrightarrow m^2\cdot\dfrac{-3}{2}< -4\)
\(\Leftrightarrow m^2>6\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{6}\\m< -\sqrt{6}\end{matrix}\right.\)
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
Phương trình x 2 – 2mx + 2m − 1 = 0 có a = 1 ≠ 0 và = 4 m 2 – 4 (2m – 1)
= 4 m 2 – 8 m + 4 = 4 ( m – 1 ) 2 ≥ 0 ; ∀ m
Phương trình có hai nghiệm x 1 ; x 2 với mọi m
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m x 1 . x 2 = 2 m − 1
Xét
x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 ⇔ 4 m 2 – 2 ( 2 m – 1 ) = 10
⇔ 4 m 2 – 4 m + 2 – 10 = 0 ⇔ 4 m 2 – 4 m – 8 = 0 ⇔ m 2 – m – 2 = 0
m 2 – 2 m + m – 2 = 0 ⇔ m ( m – 2 ) + ( m – 2 ) = 0 ⇔ ( m + 1 ) ( m – 2 ) = 0
⇔ m = 2 m = − 1
Vậy m = 2 và m = −1 là các giá trị cần tìm
Đáp án: D
cho pt: x2 + 4(m - 1)x-12=0 (1)
tìm m để pt (1) có 2no phân biệt x1,x2 thỏa mãn: |x1 - 2| . √4-mx2 = 4
Ptr có nghiệm `<=>\Delta' > 0`
`<=>(-m)^2-2m+1 > 0`
`<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`
Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`
`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`
`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`
`<=>(1-2m+3)(1-2m-2)=50`
`<=>(4-2m)(-1-2m)=50`
`<=>-4-8m+2m+4m^2=50`
`<=>4m^2-6m-54=0`
`<=>4m^2+12m-18m-54=0`
`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}` (t/m)
Lời giải:
Để PT có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$
Áp dụng định lý Viet:
$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$
Khi đó, để $x_1^2+x_2^2=x_1x_2+8$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$
$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$
$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$
$\Leftrightarrow m^2+8m-1=0$
$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$
Để phương trình có nghiệm khi
\(\Delta=m^2-4\left(-3\right)=m^2+12>0\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
Lại có : \(\left(x_1+x_2\right)^2=m^2\Rightarrow x_1^2+x_2^2=m^2-2x_1x_2=m^2+6\)
\(m^2+6+m=10\Leftrightarrow m^2+m-4=0\)
\(\Delta=1-4\left(-4\right)=1+16>0\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-1-\sqrt{17}}{2};x_2=\frac{-1+\sqrt{17}}{2}\)
\(a=1,b=-m,c=-3\)
\(\Delta=m^2-4.1.\left(-3\right)=m^2-\left(-12\right)\)
\(\Delta=m^2+12>0\)
<=> phương trình có 2 no pb
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1.x_2=\frac{c}{a}=-3\end{cases}}\)
\(\left(x_1+x_2\right)^2-2x_1x_2+m=10\)
\(m^2-\left(-6\right)+m=10\)
\(m^2+6+m=10\)
\(m^2-4+m=0\)
\(\Delta\)>0
lên m có 2 n0 pb
\(\sqrt{\Delta}=\sqrt{1+4.4}=\sqrt{17}\)
\(m_1=\frac{-1+\sqrt{17}}{2}\)
\(m_2=\frac{-1-\sqrt{17}}{2}\)