Cho (O,R) dây BC<2R.Trên cung BC lấy điểm A sao cho AB>AC.Các đường cai AD và BF cắt nhau tại I
a,Chúng minh tứ giác ABDF nội tiếp và xác định tâm của đường tròn đó
b,Chứng minh CB.CD=CA.CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)
nên BEFC là tứ giác nội tiếp đường tròn đường kính BC
=>B,E,F,C cùng thuộc một đường tròn
tâm I là trung điểm của BC
b: Xét ΔABC có
BF,CE là các đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
=>AM\(\perp\)BC
Xét (O) có
ΔAMD nội tiếp
AD là đường kính
Do đó: ΔAMD vuông tại M
=>AM\(\perp\)MD
Ta có: AM\(\perp\)BC
AM\(\perp\)MD
Do đó: BC//MD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Ta có: \(\widehat{BAH}+\widehat{ABC}=90^0\)(AH\(\perp\)BC)
\(\widehat{ADC}+\widehat{CAD}=90^0\)(ΔACD vuông tại C)
mà \(\widehat{ABC}=\widehat{ADC}\)
nên \(\widehat{BAH}=\widehat{CAD}\)
=>\(\widehat{BAH}+\widehat{MAD}=\widehat{CAD}+\widehat{MAD}\)
=>\(\widehat{BAD}=\widehat{CAM}\)(1)
Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
\(\widehat{BCD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{BAD}=\widehat{BCD}\left(2\right)\)
Xét (O) có
\(\widehat{CBM}\) là góc nội tiếp chắn cung CM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
Do đó: \(\widehat{CBM}=\widehat{CAM}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{CBM}=\widehat{BCD}\)
Xét tứ giác BCDM có BC//DM
nên BCDM là hình thang
Hình thang BCDM có \(\widehat{CBM}=\widehat{BCD}\)
nên BCDM là hình thang cân
c: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BA\(\perp\)BD
mà CH\(\perp\)BA
nên CH//BD
Ta có: CD\(\perp\)CA
BH\(\perp\)AC
Do đó: BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H,I,D thẳng hàng
d: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AFE}\left(=180^0-\widehat{EFC}\right)\)
nên \(\widehat{xAC}=\widehat{AFE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EF//Ax
Ta có: Ax//EF
Ax\(\perp\)AD
Do đó: AD\(\perp\)EF tại K
a) Xét (O) có
ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))
AD là đường kính(gt)
Do đó: ΔACD vuông tại C(Định lí)
Suy ra: AC\(\perp\)CD tại C
hay \(EC\perp CD\) tại C
Xét tứ giác ECDF có
\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối
\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác BCEF là trung điểm của BC
bạn tham khảo ở đây nha,bài này mình từng làm rồi
https://hoc24.vn/cau-hoi/881cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-cac-duong-cao-adbecf-cat-nhau-tai-ha-chung-minh-tu-giac-bcef-noi-tiep-va-xac-dinh-tam-i-cua-duong-tron-ngoai-tiep-tu-giacb-duong-thang-ef-cat-duon.1092906662181
a: góc AKB=góc AHB=90 độ
=>AKHB nội tiếp đường tròn đường kính AB
=>Tâm là trung điểm của AB
b: Gọi giao của AH và BK là M
ABHK là tứ giác nội tiếp
=>góc AHK=góc ABK
=>góc AHK=góc ADE
=>HK//DE
1: góc BFC=góc BEC=90 độ
=>BFEC nộitiếp
Tâm là trung điểm của BC
2: góc EFC=góc DAC
góc DFC=góc EBC
góc DAC=góc EBC
=>góc EFC=góc DFC
=>FC là phân giác của góc EFD
BFEC nội tiếp
=>góc AFE=góc ACB
mà góc A chung
nên ΔAFE đồng dạng với ΔACB
=>AF/AC=AE/AB
=>AF*AB=AC*AE
a: Xét tứ giác BNMC có
\(\widehat{BNC}=\widehat{BMC}=90^0\)
Do đó: BNMC là tứ giác nội tiếp
hay B,N,M,C cùng thuộc một đường tròn
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{NAC}\) chung
Do đó: ΔAMB\(\sim\)ΔANC
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{NAC}\) chung
Do đó: ΔAMN\(\sim\)ΔABC
a) Ta có: \(\angle BFC=\angle BEC=90\Rightarrow BCEF\) nội tiếp
Gọi I là trung điểm BC
Ta có: \(\Delta BFC\) vuông tại F có I là trung điểm BC \(\Rightarrow IF=IB=IC\)
\(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)
\(\Rightarrow IE=IF=IB=IC\Rightarrow I\) là tâm (BCEF)
b) Xét \(\Delta MKB\) và \(\Delta MCT:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCT\left(BKTCnt\right)\\\angle TMCchung\end{matrix}\right.\)
\(\Rightarrow\Delta MKB\sim\Delta MCT\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MT}\Rightarrow MK.MT=MB.MC\left(1\right)\)
Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle MFB=\angle MCE\left(BCEFnt\right)\\\angle EMCchung\end{matrix}\right.\)
\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow MB.MC=MF.ME\left(2\right)\)
Ta có: \(\angle AFC=\angle ADC=90\Rightarrow AFDC\) nội tiếp
Tương tự \(\Rightarrow ABDE,AEHF\) nội tiếp
Ta có: \(\angle FEI=\angle FEB+\angle BEI=\angle FAH+\angle EBI\) (\(\Delta EBI\) cân tại I)
\(=\angle FAH+\angle EAD=\angle BAC=\angle BDF\) (AFDC nội tiếp)
\(\Rightarrow FDIE\) nội tiếp \(\Rightarrow\angle MDF=\angle MEI\)
Xét \(\Delta MFD\) và \(\Delta MIE:\) Ta có: \(\left\{{}\begin{matrix}\angle MDF=\angle MEI\\\angle EMIchung\end{matrix}\right.\)
\(\Rightarrow\Delta MFD\sim\Delta MIE\left(g-g\right)\Rightarrow\dfrac{MF}{MI}=\dfrac{MD}{ME}\Rightarrow MD.MI=MF.ME\left(3\right)\)
Từ (1),(2) và (3) \(\Rightarrow MD.MI=MK.MT\)
c) Từ C kẻ đường thẳng song song với NS cắt AB,AD lần lượt tại J và L
Vì \(CJ\parallel NS\) và \(NS\bot IH\Rightarrow CJ\bot IH\) mà \(CD\bot HL\)
\(\Rightarrow I\) là trực tâm tam giác CHL \(\Rightarrow LI\bot HC\) mà \(AJ\bot CH\)
\(\Rightarrow IL\parallel BJ\) mà I là trung điểm BC \(\Rightarrow L\) là trung điểm CJ
mà \(CJ\parallel NS\) \(\Rightarrow G\) là trung điểm NS (dùng Thales để biến đổi thôi,bạn tự chứng minh nha)