Cho \(\Delta ABC\) có AB < AC, đường phân giác AD. Trên cạnh AC lấy điểm E sao cho AE = AB.
a, C/minh: BD = DE
b, Đường thẳng AB cắt tia ED tại K. C/minh: \(\Delta DBK=\Delta DEC\)
c, C/minh: \(\Delta AKC\) cân
d, C/minh: \(AD\perp KC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần b,c.d mk gải nốt nè
theo phần a ta có :\(\Delta ABD=\Delta AED\)
\(\Rightarrow\)góc ABD=góc AED(2 góc tương ứng)
Mà ABD+DBK=AED+DEC(=180độ)
\(\Rightarrow\)DBK=DEC
xét \(\Delta BDEvà\Delta EDCcó\)
DBK=DEC(cmt)
BD=DE(theo phần a)
BDK=EDC(2 góc đối đỉnh)
suy ra tam giác BDK=tam giác EDC(đpcm)
c.theo phần a ta có AB=AE(2 cạnh tg ứng )(1)
theo phần b ta có :BK=EC(2 cạnh tg ứng)(2)
Từ (1)và(2) ta có AB+BK=AE+EC
Hay AK=AC
\(\Rightarrow\)\(\Delta\)AKC cân tại A(đpcm)
d.theo bài ra ta có ADlà tia pg cuae góc A
Suy ra góc KED =góc DAC
xét \(\Delta KAHvà\Delta KAHcó\)
cạnh AH chung
KED=DAC(cmt)
AK=AC(theo phần c)
suy ra tam giác KAH=tam giác CAH(cgc)
suy ra AHK=AHC(...)
Mà AHKvà AHC ở vị trí kề bùnênAHvuông góc vsKC
hay ad vg góc vs KC
Dài quá !!!
a.Nối DvsE
Xét tam giác ABDvà tam giác AEDcó:
AB=AE(gt)
góc BAD=góc EAD(vì ad là tia pg)
Cạnh AD chung
\(\Rightarrow\Delta BAD=\Delta EAD\left(cgc\right)\)
\(\Rightarrow\)BD=DE(2 cạnh tương ứng)(đpcm)
phần b xíu nữa mk trả lời nốt nhé
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBK và ΔDEC có
\(\widehat{DBK}=\widehat{DEC}\)
BD=ED
\(\widehat{BDK}=\widehat{EDC}\)
Do đó: ΔDBK=ΔDEC
c: Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
hay ΔAKC cân tại A
d: Ta có: ΔAKC cân tại A
mà AD là phân giác
nên AD là đường cao
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ và AD=DE
AD=DE
DE<DC
=>AD<DC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau