Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
2) Ta có: ΔABD=ΔAED(cmt)
nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)(cmt)
nên \(\widehat{KBD}=\widehat{CED}\)
Xét ΔDBK và ΔDEC có
\(\widehat{KBD}=\widehat{CED}\)(cmt)
BD=ED(cmt)
\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDBK=ΔDEC(g-c-g)
3) Ta có: ΔDBK=ΔDEC(cmt)
nên BK=EC(hai cạnh tương ứng)
Ta có: AB+BK=AK(B nằm giữa A và K)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(gt)
và BK=EC(cmt)
nên AK=AC
Xét ΔAKC có AK=AC(cmt)
nên ΔAKC cân tại A(Định nghĩa tam giác cân)
a )
Xét tam giác BAD và tam giác EAD có :
AE=AB ( gt )
\(\widehat{BAD}=\widehat{AED}\) ( do AD là tia p/g của \(\widehat{A}\))
AD là cạnh chung
nên tam giác BAD = tam giác EAD
=> BD = ED ( hai cạnh tương ứng )
b ) cÓ : \(\widehat{DBA}+\widehat{DBK}=180^o\)( hai góc kề bù)
\(\widehat{DEA}+\widehat{DEC}=180^o\)( hai góc kề bù )
mà \(\widehat{DEA}=\widehat{DBA}\Rightarrow\widehat{DBK}=\widehat{DEC}\)
xÉT tam giác DBK và tam giác DEC có :
\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )
BD = ED ( cm phần a )
\(\widehat{BDK}=\widehat{EDC}\)( hai góc đối đỉnh )
nên tam giác DBK = tam giác DEC ( g.c.g)
à phần a tam giác BAD = tam giác EAD ( c.g.c ) nhé!
Phần b,c.d mk gải nốt nè
theo phần a ta có :\(\Delta ABD=\Delta AED\)
\(\Rightarrow\)góc ABD=góc AED(2 góc tương ứng)
Mà ABD+DBK=AED+DEC(=180độ)
\(\Rightarrow\)DBK=DEC
xét \(\Delta BDEvà\Delta EDCcó\)
DBK=DEC(cmt)
BD=DE(theo phần a)
BDK=EDC(2 góc đối đỉnh)
suy ra tam giác BDK=tam giác EDC(đpcm)
c.theo phần a ta có AB=AE(2 cạnh tg ứng )(1)
theo phần b ta có :BK=EC(2 cạnh tg ứng)(2)
Từ (1)và(2) ta có AB+BK=AE+EC
Hay AK=AC
\(\Rightarrow\)\(\Delta\)AKC cân tại A(đpcm)
d.theo bài ra ta có ADlà tia pg cuae góc A
Suy ra góc KED =góc DAC
xét \(\Delta KAHvà\Delta KAHcó\)
cạnh AH chung
KED=DAC(cmt)
AK=AC(theo phần c)
suy ra tam giác KAH=tam giác CAH(cgc)
suy ra AHK=AHC(...)
Mà AHKvà AHC ở vị trí kề bùnênAHvuông góc vsKC
hay ad vg góc vs KC
Dài quá !!!
a.Nối DvsE
Xét tam giác ABDvà tam giác AEDcó:
AB=AE(gt)
góc BAD=góc EAD(vì ad là tia pg)
Cạnh AD chung
\(\Rightarrow\Delta BAD=\Delta EAD\left(cgc\right)\)
\(\Rightarrow\)BD=DE(2 cạnh tương ứng)(đpcm)
phần b xíu nữa mk trả lời nốt nhé
Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:
$AB=AE$ (gt)
$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)
$AD$ chung
$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$
$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$
$\Rightarrow \widehat{DBM}=\widehat{DEC}$
Xét tam giác $DBM$ và $DEC$ có:
$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)
$BD=ED$ (cmt)
$\widehat{DBM}=\widehat{DEC}$ (cmt)
$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)
a: Xét ΔADB và ΔADE có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔADB=ΔADE
Suy ra: BD=ED
b: Ta có: ΔADB=ΔADE
nên \(\widehat{ABD}=\widehat{AED}\)
hay \(\widehat{DBK}=\widehat{DEC}\)
Xét ΔDBK và ΔDEC có
\(\widehat{DBK}=\widehat{DEC}\)
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)
Do đó: ΔDBK=ΔDEC
c: Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
d: Ta có: ΔDBK=ΔDEC
nên DK=DC
Ta có: AK=AC
nên A nằm trên đường trung trực của CK(1)
Ta có: DK=DC
nên D nằm trên đường trung trực của CK(2)
Từ (1) và (2) suy ra AD là đường trung trực của CK
hay AD\(\perp\)CK