K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

Ta có : 

\(1-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-...-\frac{1}{110}\)

\(=\)\(1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)

\(=\)\(1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

\(=\)\(1-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(=\)\(1-\left(1-\frac{1}{11}\right)\)

\(=\)\(1-1+\frac{1}{11}\)

\(=\)\(\frac{1}{11}\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

\(1-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{110}\)

\(=1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)

\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(=1-\left(1-\frac{1}{11}\right)\)

\(=1-\frac{10}{11}\)

\(=\frac{1}{11}\)

Chúc bạn học tốt !!! 

14 tháng 5 2016

1/2+1/6+1/12+...+1/110

=1/1.2+1/2.3+1/3.4+...+1/10.11

=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11

=1-1/11=10/11

19 tháng 9 2022

1/2

 

30 tháng 8 2016

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(A=1-\frac{1}{11}\)

\(A=\frac{10}{11}\)

12 tháng 10 2016

tôi bị sai sô \(\frac{1}{110}\)nha mọi  người thông cảm

12 tháng 10 2016

3581/3960 nha bn

K mình nha

20 tháng 4 2017

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-......-\left(\frac{1}{6}-\frac{1}{6}\right)-\frac{1}{7}\)

\(=1-\frac{1}{7}\)

\(=\frac{6}{7}\)

20 tháng 4 2017

1/2+1/6+1/12+1/20+1/30+1/42

=1/1x2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7

=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7

=1-1/7

=6/7

8 tháng 8 2015

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{2}-\frac{1}{11}\)

\(\frac{9}{22}\)

Hồ Thu Giang làm đúng ròi

16 tháng 2 2017

=10/11 đó

11 tháng 10 2020

=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{110}\)

=\(\frac{1}{1.2}+\frac{1}{2\cdot3}+\frac{1}{3.4}+......+\frac{1}{10.11}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{10}-\frac{1}{11}\)

=\(1-\frac{1}{11}\)

=\(\frac{10}{11}\)

11 tháng 10 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+...+\frac{1}{110}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{10}{11}\)

2 tháng 2 2020

Ta có : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\ge0\forall x\)

=> 11x \(\ge\)0

=> x  \(\ge\)

Khi đó \(\orbr{\begin{cases}x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\left(10\text{ số hạng x }\right)\\x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=-11x\left(10\text{ số hạng x}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=11x\\10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=-11x\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\\10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=-11x\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=-11x\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{11}\right)=-11x\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{10}{11}\\21x=-\frac{10}{11}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{10}{11}\left(\text{tm}\right)\\x=-\frac{10}{231}\left(\text{loại}\right)\end{cases}}}\)

Vậy \(x=\frac{10}{11}\)

26 tháng 6 2017

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+....+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{1}-\frac{1}{11}\)

\(=\frac{10}{11}\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)\(+\frac{1}{110}\) 

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...\) \(+\frac{1}{9\cdot10}\)\(+\frac{1}{10\cdot11}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\)\(\frac{1}{5}\)\(+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)\(+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{10}{11}\)