Cho tam giác ABC, biết AB=12cm, AC=24cm, lấy điểm N thuộc AC sao cho AN=6cm.
CMR: Góc ABN= góc ACB.
bạn nào giải dùm mình nhé!!! mình cám mơn ạ(^_^)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có 32+42=25=52
=> AB2+AC2=BC2
Theo định lý pi ta go đảo, ta có tam giác ABC vuông tại A
b,Do tam giác ABC vuông tại A nên góc BAC= 90 độ hay góc HAB=90 độ
do đó tam giác ABH vuông tại A
xét tam giác ABH và tam giác DBH vuông tại A và tại D có
AB=BD , HB là cạnh chung
=>tam giác ABH= tam giác DBH(trường hợp cạnh huyền -cạnh góc vuông trong tam giác vuông)
=.>góc HBA=góc HBD
Câu d ) - Vì tam giác AMN là tam giác cân AM = AN
- Ta có AM - MK = AN - HN
- Mà tam giác vuông KMB = tam giác vuông HNC (chứng minh ở câu b)
- Suy ra AK = AH
- Suy ra tam giác AKH là tam giác cân
- Suy ra góc AKH = 180 độ - góc A : 2
- Tam giác AMN có : góc M = 180 - góc A : 2
- S
Câu d ) - Vì tam giác AMN là tam giác cân suy ra AM = AN
- Vì tam giác vuông KMB = tam giác vuông HNC suy ra KM = HN
- Ta có AM - KM = AN - HN
- Suy ra AK = AH suy ra tam giác AKH là tam giác cân
- Suy ra góc AKH = 180 độ - A : 2
- Tam giác AMN có : góc M = 180 độ - A :2
- Suy ra góc K = góc M ( ở vị trí đồng vị )
- Suy ra HK // MN
Câu 1
Xét tam giác OAC ta có
AC = OA = OC ( gt )
=> tam giác OAC là tam giác đều
=>\(\widehat{CAB}=60^0\)
\(\widehat{ACB}=90^0\)(góc nội tiếp chắn nửa đường tròn )
=> \(\widehat{ABC}=180^0-90^0-60^0=30^0\)
Vậy ..............
P/s hình hơi xấu thông cảm
Câu 2 )
Xét tam giác vuông KCB , ta có :
EC = EK ( gt )
MB = MC ( gt)
=>EM là đường trung bình của tam giác KCB
=> \(\widehat{BKC}=\widehat{MEC}=90^0\)
Chứng minh tương tự : Xét tam giác ECB
=> \(\widehat{CIB}=\widehat{MPB}=90^0\)
Xét tứ giác BIKC , ta có:
\(\widehat{BKC}\)và \(\widehat{BIC}\)cùng nhìn BC dưới 1 góc 90 độ )
=> Tứ giác BIKC nội tiếp đường tròn
=> 4 điểm B,I,K,C cùng nằm trên 1 đường tròn
P/ s hình tự vẽ , tham khảo bài làm nha bạn
bài này c/m 2 tam giác có chứa 2 góc đó đồng dạng với nhau là xong
BÀI LÀM
Ta có: \(\frac{6}{12}=\frac{12}{24}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{AN}{AB}=\frac{AB}{AC}\)
Xét \(\Delta ABN\) và \(\Delta ACB\) có:
\(\frac{AN}{AB}=\frac{AB}{AC}\) (cmt)
\(\widehat{BAC}\) chung
suy ra: \(\Delta ABN~\Delta ACB\) (c.g.c)
\(\Rightarrow\)\(\widehat{ABN}=\widehat{ACB}\) (đpcm)