S=1/20+1/21+...+1/200 . chứng minh s<9/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(S=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{199}+\frac{1}{200}\)
\(\Rightarrow S>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) ( 181 phân số )
\(\Rightarrow S>\frac{181}{200}>\frac{180}{200}=\frac{9}{10}\)
\(\Rightarrow S>\frac{9}{10}\) \(\Rightarrowđpcm\)
C = 120120 + 121121 + 122122 + ... + 12001200
⇒ CC> 12001200 + 12001200 + 12001200 + ...... + 12001200 ( 181181 phân số )
⇒ CC > 181200181200 > 180200180200 = 910910
⇒ CC >910
S = \(\frac{1}{20}+\frac{1}{21}...+\frac{1}{199}+\frac{1}{200}\) ( có 181 phân số )
=> S > \(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}+\frac{1}{200}\)
=> S > \(\frac{1}{200}.181\)
=> S > \(\frac{181}{200}\)> \(\frac{180}{200}\)= \(\frac{9}{10}\)
Vậy S > 9 / 10
do \(\frac{5}{20}< 1;\frac{5}{21}< 1;\frac{5}{22}< 1;\frac{5}{23}< 1;\frac{5}{24}< 1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}< 1\)
Vậy S < 1
Mk nghĩ thế bn ạ
Ai thấy tớ đúng ủng hộ nha
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>5.\frac{5}{25}=1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>1\)
ta có S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=5/25*5=1
=>đpcm
S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
Ta có: S=1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho S > 1/2
Giải:
Ta có:
\(\dfrac{5}{20}>\dfrac{5}{25}\) ; \(\dfrac{5}{21}>\dfrac{5}{25}\) ;\(\dfrac{5}{22}>\dfrac{5}{25}\) ; \(\dfrac{5}{23}>\dfrac{5}{25}\) ; \(\dfrac{5}{24}>\dfrac{5}{25}\)
\(\Rightarrow S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}=1\)
Vậy \(S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>1\) ( đpcm )
Giải:
Dễ thấy:
\(20< 25\Leftrightarrow\dfrac{5}{20}>\dfrac{5}{25}\)
\(21< 25\Leftrightarrow\dfrac{5}{21}>\dfrac{5}{25}\)
\(.....................\)
\(24< 25\Leftrightarrow\dfrac{5}{24}>\dfrac{5}{25}\)
Cộng vế theo vế ta có:
\(S>\dfrac{5}{25}+\dfrac{5}{25}+...+\dfrac{5}{25}=\dfrac{5}{25}.5=\dfrac{25}{25}=1\)
Vậy \(S>1\) (Đpcm)
\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(=\left(\frac{1}{101}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+...+\frac{1}{200}\right)>\frac{1}{150}+...+\frac{1}{150}+\frac{1}{200}+...+\frac{1}{200}\)(50 số 1/150;1/200)
\(=\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
=>đpcm