Câu 1:
Cho N=1+3+32+33+34+...+350+351
a) Chứng tỏ rằng N chia hết cho 4
b) Tìm chữ số tận cùng của N
c) Tính tổng N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
c) 5A = 5^2 + 5^3 +....+5^97
5A - A = 5^97-5
A = (5^95 - 5)/4
d) 4A + 5 = 5^n -3
5^97 = 5^n -3
Nhận xét : 5^97 chia hết cho 5
5^n - 3 không chia hết cho 5
Suy ra ko có sộ tự nhiên n thỏa mãn
a) A = 5(5+1) + 5^3(5+1)+...+5^95(5+1)
A = 5.6 +5^3 . 6 +....+ 5^95.6
A = 6 . ( 5+ 5^3 + 5^5+....+5^95)
Suy ra A chia hết cho 6
b) Xét 5^1 + 5^3 + 5^5+....+5^95
Có: (95-1)/2 + 1 = 48 số hạng
Mà 5^1 , 5^3, 5^5,...., 5^95 đều có chữ số tận cùng = 5
Suy ra 5^1 + 5^3 +....+5^95 có chữ số tận cùng = 0
Vậy A có chữ số tận cùng là 0
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
a, TC:N=1+3+3^2+3^3+...+3^50+3^51
=(1+3)+(3^2+3^3)+...+(3^50+3^51)
=4+3^2.4+...+3^50.4
=4(1+3^2+...+3^50) chia hết cho 4
=>DCPCM
c, N=1+3+3^2+3^3+...+3^50+3^51
3N=3+3^2+3^3+...+3^51+3^52
=>3N-N=3^52-1
=>2N=3^52-1
=>N=(3^52-1):2