K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

a, TC:N=1+3+3^2+3^3+...+3^50+3^51

            =(1+3)+(3^2+3^3)+...+(3^50+3^51)

            =4+3^2.4+...+3^50.4

            =4(1+3^2+...+3^50) chia hết cho 4

=>DCPCM

c, N=1+3+3^2+3^3+...+3^50+3^51

  3N=3+3^2+3^3+...+3^51+3^52

=>3N-N=3^52-1

=>2N=3^52-1

=>N=(3^52-1):2

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

10 tháng 10 2021
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv

c) 5A = 5^2 + 5^3 +....+5^97

5A - A = 5^97-5

A = (5^95 - 5)/4

d) 4A + 5 = 5^n -3

5^97 = 5^n -3

Nhận xét : 5^97 chia hết cho 5

5^n - 3 không chia hết cho 5

Suy ra ko có sộ tự nhiên n thỏa mãn

a) A = 5(5+1) + 5^3(5+1)+...+5^95(5+1)

 A = 5.6 +5^3 . 6 +....+ 5^95.6

A = 6 . ( 5+ 5^3 + 5^5+....+5^95)

Suy ra A chia hết cho 6

b) Xét 5^1 + 5^3 + 5^5+....+5^95

Có: (95-1)/2 + 1 = 48 số hạng

Mà 5^1 , 5^3, 5^5,...., 5^95 đều có chữ số tận cùng = 5

Suy ra 5^1 + 5^3 +....+5^95 có chữ số tận cùng = 0

Vậy A có chữ số tận cùng là 0

8 tháng 8 2016

Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?

8 tháng 8 2016

trool tao à