K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Rút y từ phương trình đầu thế vô phương trình dưới rồi quy đồng lên được. 

(x² + 5x + 1)² = 0

4 tháng 2 2019

A ali : em có cách khác :D

Cộng 2 vế của 2 pt trên lại với nhau ta được

\(x^2-2xy+x-2y+3+y^2-x^2+2xy+2x-2=0\)

\(\Leftrightarrow y^2-2y+3x+1=0\)

\(\Leftrightarrow\left(y-1\right)^2=-3x\)

\(\Leftrightarrow\hept{\begin{cases}x\le0\\y=\sqrt{-3x}+1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\y=-\sqrt{-3x}+1\end{cases}}}\)

Đến đây thế vào pt (2) sẽ tìm đc x 

Nói chung làm cách a ali sẽ dễ hơn . cách của tớ cũng là 1 cách nhưng không được hay cho lắm :V

1 tháng 1 2021

Từ pt (2) ta có \(x^4-4x^3-4yx^2+4x^2+y^2+2xy=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x^2\right)-4\left(x^2-2x\right)y+4y^2-3y^2-6xy=0\)\(\Leftrightarrow\left(x^2-2x-2y\right)^2=3y^2+6xy\)

Hệ pt đã cho trở thành: \(\hept{\begin{cases}x^2+2xy-2x-y=0\\\left(x^2-2x-2y\right)^2=3y^2+6xy\end{cases}}\Rightarrow\hept{\begin{cases}y=x^2+2xy-2x\left(3\right)\\y^2\left(1+2x\right)^2=3y\left(y+2x\right)\left(4\right)\end{cases}}\)

Từ (4) ta có: \(2y\left(2xy+2x^2-3x-y\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\2xy+2x^2-3x-y=0\end{cases}}\)

 + Với y=0 thì từ (3) ta có: \(x^2-2x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

+ Với \(2xy+2x^2-3x-y=0\Rightarrow y=2xy+2x^2y-3x\)thay vào (3) có \(x\left(2xy-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\Rightarrow y=0\\y=\frac{x+1}{2x}\left(x\ne0\right)\end{cases}}\)

Thay \(y=\frac{x+1}{2x}\left(x\ne0\right)\)vào pt(3) ta có: \(\left(x-1\right)\left(2x^2+1\right)=0\Leftrightarrow x=1\Rightarrow y=1\)

Vậy hệ pt đã cho có 3 nghiệm (x;y)=(0;0),(2;0),(1;1)

15 tháng 4 2023

Điều kiện: \(y\ge0\)

pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)

Thay vào pt thứ hai của hệ, ta được  \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)

\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\)         \(\left(x\ge3\right)\)

\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)

\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)

\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)

\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)

Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)

\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)

\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)

Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.

2 tháng 12 2019

\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\left(1\right)\\x^2-y^3+xy=1\left(2\right)\end{cases}}\)

(2) <=> \(3x^2-3y^3+3xy=3\left(3\right)\)

Lấy (3) - (1):

\(x^2-2y^3+xy-2xy^2=0\)

<=> \(x\left(x+y\right)-2y^2\left(x+y\right)=0\)

<=> \(\left(x+y\right)\left(x-2y^2\right)=0\)

<=> \(\orbr{\begin{cases}x=-y\\x=2y^2\ge0\left(loại\right)\end{cases}}\)

Với x = -y thế vào (2) ta có: \(y^2-y^3-y^2=1\Leftrightarrow-y^3=1\Leftrightarrow y=-1\)

khi đó: x = 1

Vậy ( 1; -1 ) là nghiệm hệ phương trình.

29 tháng 12 2019

\(\hept{\begin{cases}2x^2+3xy+2x+y=0\left(1\right)\\x^2+2xy+2y^2+3x=0\left(2\right)\end{cases}}\)

PT(1) - PT(2), ta được : \(x^2+xy-x+y-2y^2=0\Leftrightarrow\left(x^2-y^2\right)+\left(xy-x\right)-\left(y^2-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+x\left(y-1\right)-y\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)\left(y-1\right)=0\Leftrightarrow\left(x-y\right)\left(x+2y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-2y\end{cases}}\)

cứ thế mà giải , đến đây dễ rồi

9 tháng 5 2020

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2