Có tồn tại hay ko 2 số dương a vá b khác nhau, sao cho 1/a-1/b=1/a-b ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!
Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\) suy ra \(\left(b-a\right)\left(a-b\right)=ab\). Vế trái có giá trị âm vì là tích của hai số đối nhau khác 0, vế phải có giá trị dương vì là tích của hai số dương. Vậy không tồn tại hai số dương a và b khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Chú ý: Ta cũng chứng minh được rằng không tồn tại hai số a và b khác 0, khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\). Thật vậy, nếu \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab\Rightarrow ab-b^2-a^2+ab=ab\Rightarrow a^2-ab+b^2=0\)
\(\Rightarrow a^2-\frac{ab}{2}-\frac{ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}=0\Rightarrow a\left(a-\frac{b}{2}\right)-\frac{b}{2}\left(a-\frac{b}{2}\right)+\frac{3b^2}{4}=0\)
\(\Rightarrow\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\Rightarrow b=0,a=0.\)
Nhưng giá trị này làm cho biểu thức không có nghĩa.
Nếu a > b thì: \(\frac{1}{a}< \frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}< 0\)
\(a>b\Rightarrow a-b>0\Rightarrow\frac{1}{a-b}>0\)
Mà theo đề bài \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\Rightarrow\)Không tồn tại 2 số a và b khác nhau thỏa mãn đề bài
Làm tương tự với trường hợp a < b.
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a-b}\)
\(\Rightarrow\dfrac{b\left(a-b\right)}{ab\left(a-b\right)}+\dfrac{a\left(a-b\right)}{ab\left(a-b\right)}=\dfrac{ab}{ab\left(a-b\right)}\left(a,b\ne0;a\ne b;a,b>0\right)\)
\(\Rightarrow\left(a-b\right)\left(b-a\right)=ab\)
\(\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\)
\(\Rightarrow-\left(a-b\right)^2=ab\left(1\right)\)
mà \(\left\{{}\begin{matrix}-\left(a-b\right)^2< 0\\ab>0\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô lý
⇒ không có 2 số a≠b; a,b>0 thỏa đề bài
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\)(b-a).(a-b)=ab
\(\Rightarrow\)-(a-b)2=ab
Vì -(a-b)2\(\le\)0 nên không tồn tại a,b