Cho a,b,c>0 t/m \(a^2+b^2+c^2=1\).
C/m \(\dfrac{1}{4-\sqrt{ab}}+\dfrac{1}{4-\sqrt{bc}}+\dfrac{1}{4-\sqrt{ca}}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^5+b^2+ab+6\ge3a^2b+6\)
\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)
\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)
\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)
\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
\(\Rightarrow P\le\sqrt{1}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có: \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y+z=6\\x;y;z>0\end{matrix}\right.\)
Làm nốt :v
Lời giải:
Từ \(ab+bc+ac=1\Rightarrow a^2+ab+bc+ac=a^2+1\)
\(\Leftrightarrow (a+b)(a+c)=a^2+1\)
Tương tự: \(\left\{\begin{matrix} b^2+1=(b+c)(b+a)\\ c^2+1=(c+a)(c+b)\end{matrix}\right.\)
Khi đó:
\(A=\frac{(b^2+bc)(c^2+ca)(a^2+ab)}{\sqrt{(a^4+a^2)(b^4+b^2)(c^4+c^2)}}\) \(=\frac{b(b+c)c(c+a)a(a+b)}{\sqrt{a^2b^2c^2(a^2+1)(b^2+1)(c^2+1)}}\)
\(=\frac{abc(a+b)(b+c)(c+a)}{abc\sqrt{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}}\) \(=\frac{abc(a+b)(b+c)(c+a)}{abc(a+b)(b+c)(c+a)}=1\)
Vậy \(A=1\)
$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Do 1/b+1/c=3/4-1/a suy ra \(\sum\) (1a/)=3/4
Ta có \(\dfrac{\sqrt{b^2+bc+c^2}}{a^2}\)= \(\dfrac{\sqrt{\left(b+c\right)^2-bc}}{a^2}\ge\dfrac{\sqrt{\left(b+c\right)^2-\dfrac{\left(b+c\right)^2}{4}}}{a^2}=\dfrac{\sqrt{3}\left(b+c\right)}{2a^2}\)
Tương tự ta được:
P\(\ge\) \(\sqrt{3}\) \(\left(\sum\dfrac{b+c}{a^2}\right)\) \(\ge\) \(\sqrt{3}\) (1/a+1/b+1/c) \(\ge\dfrac{3\sqrt{3}}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\) a=b=c=4
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiết lập 2 BĐT tương tự:
\(\dfrac{b}{\sqrt{1+b^2}}\le\dfrac{1}{4}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{1+c^2}}\le\dfrac{1}{4}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\dfrac{1}{4}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\end{matrix}\right.\)\(\Rightarrow x+y+z=xyz\)
\(\Rightarrow P=xy+yz+xz-\sqrt{x^2+1}-\sqrt{y^2+1}-\sqrt{z^2+1}\)
Khi \(a=b=c=\frac{1}{\sqrt{3}}\Rightarrow x=y=z=\sqrt{3}\Rightarrow P=3\)
Ta sẽ chứng minh \(P=3\) là giá tri nhỏ nhất của \(P\)
\(\Rightarrow BDT\Leftrightarrow xy+yz+xz-3\ge\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)
Ta có BĐT \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2y^2z^2\)
\(\Leftrightarrow\left(xy+yz+xz\right)^2\ge x^2y^2z^2+2xyz\left(x+y+z\right)\)\(=3\left(x+y+z\right)^2\)
Xét \(VT^2=\left(xy+yz+xz-3\right)^2=\left(xy+yz+xz\right)^2-6\left(xy+yz+xz\right)+9\)
\(\ge3\left(x+y+z\right)^2-6\left(xy+yz+xz\right)+9\)\(=3\left(x^2+y^2+z^2\right)+9\left(1\right)\)
Và \(VP^2\le\left(1+1+1\right)\left(x^2+y^2+z^2+3\right)=3\left(x^2+y^2+z^2\right)+9\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM. Vậy \(P_{min}=3\Rightarrow a=b=c=\frac{1}{\sqrt{3}}\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Đề bài sai, bạn kiểm tra lại điều kiện \(a^2+b^2+c^2=1\)