Tính nhanh
A = \(\frac{1}{1\cdot3}\)+ \(\frac{1}{3\cdot5}\) + ..... + \(\frac{1}{97\cdot99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
\(2S=\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{97}-\frac{2}{99}\)
\(2S=2-\frac{2}{99}\)
\(2S=\frac{196}{99}\)
\(S=\frac{196}{99}\cdot\frac{1}{2}=\frac{98}{99}\)
Ta có: S=2/1.3+2/3.5+...+2/97.99
S= 2/2.(1-1/3+1/3-1/5+...+1/97-1/99)
S= 1-1/99=98/99
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{97.99}+\frac{1}{99.100}\)
\(\Rightarrow2A=2\left(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{97.99}+\frac{1}{98.100}\right)\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{2.4}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{98.100}\)
\(\Rightarrow2A=\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)+\left(\frac{2}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(\Rightarrow2A=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(\Rightarrow2A=\left(1-\frac{1}{99}\right)+\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\Rightarrow2A=\left(\frac{99}{99}-\frac{1}{99}\right)+\left(\frac{50}{100}-\frac{1}{100}\right)\)
\(\Rightarrow2A=\frac{98}{99}+\frac{49}{100}=\frac{9800}{9900}+\frac{4851}{9900}=\frac{14651}{9900}\)
\(\Rightarrow A=\frac{14651}{9900}:2=\frac{14651}{9900}.\frac{1}{2}=\frac{14651}{19800}\)
bạn nhớ thử lại nhé :)
B = 1/1 x 2 x 3 + 1/2 x 3 x 4 + ... + 1/98 x 99 x 100 B = 1 - 1/2 + 1/2 + 1/2 - 1/3 + 1/3 + ... + 1/98 + 1/99 -1/100 B = 1 1/100 B = 99/100
\(\left(\frac{3}{1.3}+\frac{3}{3.5}+.......+\frac{3}{97.99}\right).\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow[\frac{3}{2}.(\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{2}{97.99})].\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{97}-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow\left(\frac{3}{2}.\frac{98}{99}\right).\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow\frac{49}{33}.\left(2x+1\right)=x+\frac{1}{33}\)
\(\Rightarrow\frac{49}{33}.2x+\frac{49}{33}=x+\frac{1}{33}\)
\(\Rightarrow\frac{98}{33}.x+\frac{49}{33}=x+\frac{1}{33}\)
\(\Rightarrow\frac{98}{33}.x-x=\frac{1}{33}-\frac{49}{33}\)
\(\Rightarrow\frac{65}{33}.x=\frac{-16}{11}\)
\(\Rightarrow x=\frac{-16}{11}:\frac{65}{33}\)
\(\Rightarrow x=\frac{-48}{65}\)
Vậy \(x=\frac{-48}{65}\)
\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(E=\frac{1}{1}-\frac{1}{99}\)
\(E=\frac{98}{99}\)
E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt
2Q = 1-1/3-1/2+1/4+1/3-1/5-1/4+1/6-........+1/97-1/99-1/98+1/100 = 1-1/2-1/99+1/100 = 4949/9900 >> Q = 49499/19800
\(Q=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{99}{100}=\frac{99}{200}\) (không chắc cho lắm :v)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\frac{98}{99}\)
\(A=\frac{49}{99}\)
=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
=1-\(\frac{1}{99}\)
=\(\frac{98}{99}\)