K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tam giác ABC cân tại A,AM là đường phân giác.                                                                                                                                       a) CMR:AM là đường trung trực của tam giác ABC .                                                                                                                                    b)CF là phân giác của góc ACB.AM cắt CF tại I.Cm BI là phân giác của góc ABC                     ...
Đọc tiếp

cho tam giác ABC cân tại A,AM là đường phân giác.                                                                                                                                       a) CMR:AM là đường trung trực của tam giác ABC .                                                                                                                                    b)CF là phân giác của góc ACB.AM cắt CF tại I.Cm BI là phân giác của góc ABC                                                                                            c)Trên tia đối tia MA lấy điểm D sao cho AM .E là trung điểm của Ac .Gọi DE giao CM tại điểm G.tính CG và DE khi BC =8cm và AC=5cm

0
19 tháng 10 2018

AH
Akai Haruma
Giáo viên
12 tháng 6 2021

Lời giải:

a) Sửa lại thành $\triangle ABM=\triangle ACM$ 

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (do $ABC$ là tam giác cân tại $A$)

$\widehat{ABM}=\widehat{ACM}$ (do $ABC$ là tam giác cân tại $A$)

$AM$ chung

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b) Từ tam giác bằng nhau trên suy ra:

$\widehat{BAM}=\widehat{CAM}$ nên $AM$ là phân giác $\widehat{BAC}$

AH
Akai Haruma
Giáo viên
12 tháng 6 2021

Hình vẽ:

22 tháng 7 2019

a: M là trung điểm của BC

=>AM là đường trung tuyến của ΔABC

b: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

c: Sửa đề; tam giác ABC

AB=AC

BM=CM

=>AM là trung trực của BC

26 tháng 4 2017

A B C M

a/ Câu này không chỉ có 1 cách mình trình bày!

Xét tam giác ABM và tam giác ACM có:

   góc BAM = góc CAM (gt)

   AM: chung

  AB = AC (tam giác ABC cân tại A)

=> tam giác ABM = tam giác ACM (c.g.c)

b/ Vì tam giác ABC cân tại A => AM vừa là đường phân giác vừa là đường cao

PS: Học tính chất tam giác cân là làm được

Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC và AM là đường cao

Xét ΔEBC có 

M là trung điểm của BC

MA//EC

Do đó: A là trung điểm của EB

Xét ΔEBC có

M là trung điểm của BC

A là trung điểm của EB

Do đó: MA là đường trung bình

=>MA//EC

hay EC⊥BC

=>ΔECB vuông tại C

mà CA là đường trung tuyến

nên CA=AE

hay ΔACE cân tại A

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

a: loading...

b: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

a: Xét ΔAMB và ΔDMC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

Suy ra: AB=CD

c: Xét ΔABC có 

AM là đường trung tuyến ứng với cạnh BC

AM là đường phân giác ứng với cạnh BC

Do đó: ΔABC cân tại A