\(\frac{x}{5}\)\(+1\)\(=\)\(\frac{1}{y-1}\)
ĐỀ BÀI LÀ TÌM CÁC CẶP SỐ NGUYÊN NHA !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}-\frac{1}{y+2}=\frac{1}{10}\)
\(\frac{1}{y+2}=\frac{x}{5}-\frac{1}{10}=\frac{2x}{10}-\frac{1}{10}=\frac{2x-1}{10}\)
\(\Rightarrow\left(y+2\right).\left(2x-1\right)=1.10=10\)
\(\Rightarrow2x-1\inƯ\left(10\right)\)
Mà 2x - 1 là lẻ
\(\Rightarrow2x-1\in\left[1;5;-1;-5\right]\)
Xét \(2x-1=1\Rightarrow x=1\)
\(\Rightarrow y+2=10\Rightarrow y=8\)
Xét \(2x-1=5\Rightarrow x=3\)
\(\Rightarrow y+2=2\Rightarrow y=0\)
Xét \(2x-1=-1\Rightarrow x=0\)
\(\Rightarrow y+2=-10\Rightarrow y=-12\)
Xét \(2x-1=-5\Rightarrow x=-2\)
\(\Rightarrow y+2=-2\Rightarrow y=-4\)
tính: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1982}+\frac{1}{1984}+\frac{1}{1986}\)
\(\frac{2a+3}{6}=-\frac{1}{b+5}\)
\(\left(2a+3\right)\left(b+5\right)=-6\)
a và b nguyên nên 2a+3 và b+5 là ước của -6
2a+3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
b+5 | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
a | -1 | -2 | -0,5 | -2,5 | 0 | -3 | 1,5 | -4,5 |
b | -11 | 1 | -8 | -2 | -7 | -3 | -6 | -4 |
Vậy bài toán có 4 đáp số là 4 cặp số:
a=-1 và b=-11
a=-2 và b=1
a=0 và b=-7
a=b=-3
5/x = 1/6 + y/3
=> 5/x = 1/6 + 2y/6
=> 5/x = 1+2y/6
=> x.(1+2y) = 5.6 = 30
=> x và 1+ 2y nhận các ước của 30
=> 1 + 2y thuộc Ư(30)
=> 1 + 2y thuộc {+_1;+_2;+_3;+_5;+_6;+_15;+_30}
Mà 1+2y là số lẻ => 1 + 2y nhận các ước lẻ
=> 1+2y thuộc { +_1;+_3;+_5;+_15}
........
Bn tự lm tiếp nhé, tính k nhầm thì mk nghĩ có 8 cặp
a)\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}.2+5.2^{x-2}=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}\left(5+2\right)=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}.7=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}=\frac{1}{32}\)
\(\Leftrightarrow2^{x-2}=2^{-5}\)
\(\Leftrightarrow x-2=-5\)
\(\Leftrightarrow x=-3\)
b)\(\left|x+\frac{1}{5}\right|-7=-5\)
\(\Leftrightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=2\\x+\frac{1}{5}=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{5}\\x=\frac{-11}{5}\end{cases}}\)
ta có \(\text{2xy + x - 2y = 4}\)
\(\Leftrightarrow\text{2y(x - 1) + x = 4}\)
\(\Leftrightarrow\text{2y(x - 1) + x - 1 = 3}\)
\(\Leftrightarrow\text{2y(x - 1) + (x - 1) = 3}\)
\(\Leftrightarrow\text{(x - 1).(2y + 1) = 3}\)
=> x-1 và 2y+1 thuộc Ư(3)
\(\RightarrowƯ\left(3\right)=\left\{\text{-3;-1;1;3}\right\}\)
x-1 | -1 | 3 | 1 | -3 |
2y+1 | -3 | 1 | 3 | -1 |
x | 0 | 4 | 2 | -2 |
y | -2 | 0 | 1 | -2 |
vậy các cặp x,y thỏa mãn là ...
b) tương tự
1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow x+y+z=xyz\)
Không mất tính tổng quát, giả sử: \(x\le y\le z\)
Lúc đó: \(x+y+z\le3z\)
\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
\(\Rightarrow xy\in\left\{1;2;3\right\}\)
* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\). \(\Rightarrow2+z=z\)(vô lí)
* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)
* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)) \(\Rightarrow4+z=3z\Leftrightarrow z=2\)
Vậy x,y,z là các hoán vị của (1,2,3)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow40=x\left(1-2y\right)\)
Đến đây bạn lập bảng ha !
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).
x/5+1=1/y-1
x/5+5/5=1/y-1
x+5/5=1/y-1
x+5*y-1=5
x+5*y-1 thuộc Ư(5)={1,-1,5,-5}. Vậy (x,y)=(-4,6);(0,2);(-6,-4);(-10,0)
0