Một ô tô đi từ A đến B trong một thời gian dự định . Sau khi đi được nửa quãng đường thì ô tô tăng vận tốc thêm 20%. Do đó ô tô đến B sớm hơn dự định 15 phút. Tính thời gian ô tô đi từ A đến B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AB là x
Vận tốc oto là a
thời gian dự định là x/a
Thời gian đi nửa quãng đường với vận tốc a là x/2a Tăng vận tốc lên 20% thì vận tốc mới là 1,2a
Thời gian đi nửa quãng đường với vận tốc 1,2a là x/2.4a
Ta có x/a = x/2a + x/2.4a + 1/4
12s/12a = 6s/12a + 5s/12a + 1/4
s/12a = 1/4
s/2a = 6/4
s/2.4a = 5/4
Thời gian đi AB của người đó là
s/2a + s/2.4a = 11/4 = 2h45'
Gọi AB là : x
Vận tốc ô tô là a
Thời gian dự định là x/a
Thời gian đi nửa đường vận tốc a là x/2a Tăng vận tốc lên \(20\%\)thì vận tốc mới là \(1,2a\)
Thời gian đi nửa quãng đường với vận tốc \(1,2a\)là \(\)x/2.4a
Theo bài ra ta có:
x/a = x/2a + x/2.4 + 1/4
12s/12a = 6s/12a + 5s/12a + 1/4
s/12 = 1/4
s/22a = 6/4
s/2.4a = 5/4
Thời gian đi AB của người đó là:
s/2a + s/2.4a = 11/4 = 2h45'
Đ/S:................
Gọi vận tốc của ô tô nửa đoạn đường đầu là x, nửa đoạn đường cuối là y (y > x > 0)
Theo đề bài ta có: y = 20%x + x = \(\frac{1}{5}\)x + x = \(\frac{6}{5}\)x
⇒\(\frac{x}{y}\)=\(\frac{5}{6}\) (1)
Gọi thời gian đi nửa đoạn đường đầu ô tô đi là t1, thời gian nửa đoạn đường sau là t2 (t1 > t2 > 0)
=> t1 - t2 = \(\frac{10}{60}\)=\(\frac{1}{6}\)(h)
Ta có: x.t1 = y.t2 (cùng bằng \(\frac{1}{2}\) quãng đường AB)
⇒\(\frac{x}{y}\)=\(\frac{t2}{t1}\) kết hơp với (1) ⇒\(\frac{t2}{t1}\)=\(\frac{5}{6}\)⇔\(\frac{t2}{5}\)=\(\frac{t1}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{t2}{5}\)=\(\frac{t1}{6}\)=\(\frac{t1-t2}{6-5}\)=\(\frac{1}{6}\)
⇒\(\hept{\begin{cases}t2=\frac{1}{6}.5=\frac{5}{6}\\t1=\frac{1}{6}.6=1\end{cases}}\)
Vậy thời gian thực tế ô tô đi hết quãng đường AB là:
t1 + t2 = 1 + \(\frac{5}{6}\)=\(\frac{11}{6}\)= 1h50'
Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)
vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \frac{6}{5}v56v
Đổi 10' = \frac{1}{6}h61h
Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)
thời gian ô tô đi trong nửa quãng đường còn lại là: t - \frac{1}{6}61
Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}6t=5t−61=6−5t−(t−61)=61
\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}⇒{t=61.6=1t−61=61.5=65
Vậy thời gian ô tô đi từ A -> B là:
t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)t+(t−61)=1+65=611(h)
vì vận tốc tăng lên 20% sớm hơn 15 phút nên suy ra
thời gian đi từ A đến B là :
15: 20% x100% = 75 ( phút )
đổi 75 phút = 1 giờ 15 phút
đáp số : 1 gời 15 phút
Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)
vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \frac{6}{5}v56v
Đổi 10' = \frac{1}{6}h61h
Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)
thời gian ô tô đi trong nửa quãng đường còn lại là: t - \frac{1}{6}61
Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}6t=5t−61=6−5t−(t−61)=61
\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}⇒{t=61.6=1t−61=61.5=65
Vậy thời gian ô tô đi từ A -> B là:
t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)t+(t−61)=1+65=611(h)
Gọi AB là x:
Vật tốc ôtô là y:
Thời gian dự định là: \(\frac{x}{y}\)
Thời gian đi nửa quãng đường với vận tốc y là: \(\frac{x}{2y}\)
Tăng vận lên tốc lên 20 phần trăm thì vật tốc mới là 1,2y
Thời gian đi nửa quãng đường với vận tốc 1,2y \(\frac{x}{2,4y}\)
Ta có:
\(\frac{x}{y}=\frac{x}{2y}=\frac{x}{2,4y}+\frac{1}{4}\)
\(\frac{12x}{12y}=\frac{6x}{12y}+\frac{5x}{12y}+\frac{1}{4}\)
\(\frac{x}{12y}=\frac{1}{4}\)
\(\frac{x}{2y}=\frac{6}{4}\)
\(\frac{x}{2,4y}=\frac{5}{4}\)
Thời gian ôtô đi AB của người đó là:
\(\frac{x}{2y}+\frac{x}{2,4y}=\frac{11}{4}=2h45'\)
Đáp số: 2h45'