K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2021

Phương trình đã cho ⇔√x+√y=6√55⇔x+y=655
6√55655 là số vô tỉ nên vế trái là các căn thức đồng dạng chứa √5555
Đặt √x=a√55;√y=b√55(a;b∈Z+)x=a55;y=b55(a;b∈Z+)
⇒a+b=6⇒a+b=6 nên có các trường hợp là 6=1+5=2+4=3+36=1+5=2+4=3+3
Tới đây đơn giản rồi! 

#HT#

NV
17 tháng 12 2020

\(\Leftrightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Leftrightarrow x-y-z=2\left(\sqrt{yz}-\sqrt{3}\right)\)

Do  x;y;z;2 đều là các số hữu tỉ mà \(\sqrt{yz}-\sqrt{3}\)  vô tỉ

Nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-y-z=0\\yz=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y;z\right)=\left(4;3;1\right);\left(4;1;3\right)\)

4 tháng 12 2016

\(\sqrt{x}+\sqrt{y}=6\sqrt{55}.\)
Đặt \(\sqrt{x}=a\sqrt{55},\sqrt{y}=b\sqrt{55}\Rightarrow a+b=6\)
Do x, y nguyên dương và x<y \(\Rightarrow\left(a,b\right)\in\left\{\left(5,1\right);\left(4,2\right)\right\}\)
Thay vào tính => đáp án ..
 

4 tháng 12 2016

Bạn ơi cho hỏi sao chỉ có 2 cặp vậy

29 tháng 10 2016

bài này tớ giải rồi mà

vào lúc : 000

ok minh giải chi tiết nhé.

Hiển nhiên hai vế dương

bình phương hai vế ta được

x+2căn3=y+z+2căn(yz)  [hằng đẳng thức thôi]

x-y-z=2can(yz)-2can(3)

nhận xét: x,y,z tư nhiên  do vậy vế trái là một số nguyên

vế phải cũng phải là một số nguyên => yz=3 để triệt tiêu số vô tỷ -2can(3) 

ok !!!

28 tháng 10 2016

Bình phương của 2 vế ta được

\(x+2\sqrt{3}=y+z+2\sqrt{yz}\)

Vì x,y,z đều tự nhiên nên phần vô tỷ và phần nguyên 2 vế phải bằng nhau hay

\(\hept{\begin{cases}x=y+z\\\sqrt{3}=\sqrt{yz}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}or\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

28 tháng 8 2018

\(\Leftrightarrow\sqrt{x}+\sqrt{y}=7\sqrt{19}\)

đặt \(\sqrt{x}=a.\sqrt{19}\);\(\sqrt{y}=a.\sqrt{19}\left(a+b=7\right)\)

Vì \(a,b\in N\)nên \(a\in\hept{ }0;1;2;3;4;5;6;7\)

xét từng TH rồi được kết quả (x;y) là (0;931),(19;684),(76;475),(171,304),(304;171),(475;76),(684;19),(931;0)

6 tháng 4 2016

2. x=4; (y;z)=(3;1) ; (1;3)

23 tháng 5 2017

\(\sqrt{833}=7\sqrt{17}\)

Cho \(\sqrt{x}=a\sqrt{17}\)và  \(\sqrt{y}=b\sqrt{17}\)với \(a+b=7\)

\(\Rightarrow a=1\)thì \(b=6\)tương tự với các kết quả khác sao cho \(a+b=7\)

\(\Rightarrow\sqrt{x}=1\sqrt{17}=\sqrt{17}\Leftrightarrow x=17\) và \(\sqrt{y}=6\sqrt{17}=\sqrt{17\cdot6^2}=\sqrt{612}\Leftrightarrow y=612\)

Làm tương tự với từng kết quả của a và b

21 tháng 10 2016

x+2can3=z+y+2can(yz)

y.z=3

z=1=> y=3; x=4

y=1=>z=3; x=4

27 tháng 10 2016

z=1                             ;                       z=3

y=3                             ;                        y=1

x=4                             ;                        x=4

7 tháng 8 2021

Ai giúp e vs ạ

17 tháng 5 2018

a) Nhận thấy x = 1 không là nghiệm của phương trình nên ta xét \(x\ge2\)

 Do đó , y là số lẻ 

Mà 12x , y2  \(\equiv1\left(mod8\right)\)

Suy ra 5x \(\equiv1\left(mod8\right)\)

=> x chẵn 

Đặt x = 2k (k > 0)

=> 52k = (y - 12k)(y + 12k

Mặt khác , 5 là số nguyên tố nên tồn tại một số m,m < k thõa : y + 12k = 52k - m 

và y - 12k = 5m 

=> 2.12k = 5m(52k - 2m - 1)

Nhận thấy : 2 và 12 là hai số nguyên tố cùng nhau với 5 

=> 52k + 122k = (12k + 1)2

Mà 2.12k  =  5m =>  m = 0 và y = 12k + 1

=> 2.12k = 25k - 1

Tìm từng giá trị của k thấy k = 1 thõa mãn phương trình 

Vậy x = 2 , y = 13

17 tháng 5 2018

b) Dùng nhị thức Newton , ta khai triển hai hạng tử được 

\(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}=2^{2016}+2^{2016}+3^{1008}+3^{1008}=2\left(2^{2016}+3^{1008}\right)⋮2\)

Vậy ...... 

21 tháng 3 2020

\(P=\sqrt{x+1}+\sqrt{y+1}\ge\sqrt{x+1+y+1}=\sqrt{x+y+2}=\sqrt{101}\)

GTNN\(P=\sqrt{101}\)

\(P=\sqrt{x+1}+\sqrt{y+1}\)

\(=>\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le2\left(x+1+y+1\right)=2.101=202\)

GTLN \(P=202\)