tam giác DEF biết AB*EF = DE*BC và AC*DE = AB*DF . chứng minh tam giác DEF đồng dạng tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Một trong 3 điểm D,E,F phải là t/đ của 1 đoạn nào đó trong tam giác thì mới đồng quy được.
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF
=>7/EF=5/DF=3/6=1/2
=>EF=14cm; DF=10cm
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF
=>7/EF=5/DF=3/6=1/2
=>EF=14cm; DF=10cm
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
Giải
Vì\(\Delta ABC~\Delta DEF\) nên ta có:
\(\widehat{D}=\widehat{A}=45^o\)
\(\widehat{E}=\widehat{B}=55^o\)
\(\widehat{F}=\widehat{C}=\left(180^o-45^o-55^o\right)=80^o\)
Xét\(\Delta ABC~\Delta DEF\) có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{AB.3}{2}=7,5\)
\(DF=\frac{AC.3}{2}=10,5\)
#hoktot<3#
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
a: Xét ΔABC và ΔDEF có
góc A=góc D
góc B=góc E
=>ΔABC đồng dạng vơi ΔDEF
=>AB/DE=AC/DF=BC/EF
=>8/6=AC/DF=10/EF
=>EF=10*6/8=7,5cm và AC/DF=4/3
=>4DF=3AC
mà AC-DF=3
nên DF=9cm; AC=12cm
b: ΔABC đồng dạng với ΔDEF
=>S ABC/S DEF=(4/3)^2=16/9
=>S DEF=22,325625(cm2)