K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

10.

\((x^2-2x-3)(x^2+10x+21)=25\)

\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)

\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)

\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)

Đặt \(x^2+4x-21=a\) thì pt trở thành:

\(a(a+24)=25\)

\(\Leftrightarrow a^2+24a-25=0\)

\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)

Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)

\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)

Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)

Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

11.

\(x^4-4x^3+10x^2+37x-14=0\)

\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)

\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)

\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)

\((x+2)(x^3-6x^2+22x-7)=0\)

\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)

Đối với pt $(*)$ (ta sử dụng pp Cardano)

\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)

\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)

Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:

\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)

\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)

\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:

\(27t^2+576t-1000=0\)

\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)

\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)

\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)

\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.

P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.

28 tháng 8 2020

x+ y2 + 10x + 6y + 34 = 0

=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0

=> (x + 5)2 + (y + 3)2 = 0

=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Vậy x = - 5 ; y = -3

b) 25x2 + 4y2 + 10x + 4y + 2 = 0

=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0

=> (5x + 1)2 + (2y + 1)2 = 0

=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)

Vậy x = -0,2 ; y = -0,5

28 tháng 8 2020

a) 

\(x^2+10x+25+y^2+6y+9=0\)    

\(\left(x+5\right)^2+\left(y+3\right)^2=0\)  ( 1 ) 

Ta có : 

\(\left(x+5\right)^2\ge0\forall x\) 

\(\left(y+3\right)^2\ge0\forall y\) 

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)         

\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)   

b) 

\(25x^2+10x+1+4y^2+4y+1=0\)     

\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 ) 

Ta có : 

\(\left(5x+1\right)^2\ge0\forall x\)      

\(\left(2y+1\right)^2\ge0\forall y\)  

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)    

\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)

2 tháng 10 2016

X2-10x-11=0

<->x2+x-11x-11=0

<->x(x+1)-11(x+1)=0

<-> (x-11)(x+1)=0

<-> x-11=0

    Hoặc x+1=0

X=-1

X=11

2 tháng 10 2016

(x-5)^2-36=0

(x-5)^2=36

x-5=6

x-5=-6

x=11 hoặc -1

8 tháng 10 2017

x=456 hoặc 556

17 tháng 9 2016

3, A=(x-3)^2+(x-11)^2

\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)

\(\Rightarrow\)(X^2-9)+(X^2-121)

Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0

\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121

\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130

Dấu = xảy ra khi : X=0

Vậy : Min A = -130 khi x=0

Mình mới lớp 7 sai thì thôi nhé

Ta có: x = 9 => x - 9 = 0

\(Q\left(x\right)=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+x^{12}-9x^{11}+...-x^3+9x^2+x^2-9x-x+9+1\)

\(=x^{13}\left(x-9\right)-x^{12}\left(x-9\right)+...-x^2\left(x-9\right)+x\left(x-9\right)-\left(x-9\right)+1\)

\(=0+1=1\)

18 tháng 3 2020

\(A=6xy\left(xy-y^2\right)-8x^2.\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)

\(A=6x^2y^2-6xy^3-8x^3+8x^2y^2+5y^2x^2-5xy^3\)

\(A=19x^2y^2-11xy^3-8x^3\)

Tại x=1/2, y=2

\(A=19.\frac{1}{4}.2^2-11.\frac{1}{2}.2^3-8\left(\frac{1}{2}\right)^3=19-44-1=-26\)

13 tháng 7 2016

e) \(E=x^5-15x^4+16x^3-29x^2+13x\) tại x = 14

\(E=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+x\left(x-1\right)\)

\(E=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(E=-x\)

\(E=-14\)

13 tháng 7 2016

d)  \(D=x^3-30x^2-31+1\) tại x = 31

\(D=31^3-30.31^2-31+1\)

\(D=31^2\left(31-30-1\right)+1\)

\(D=0+1\)

\(D=1\)