Tìm x: (x-1)\(^{2004}\)+ (x\(^2\)-1)\(^{2016}\)+\(|x^2-x|\)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ \(\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+|x^2-x|\)
\(\left(x-1\right)^{2004}\ge0\forall x;\left(x^2-1\right)^{2016}\ge0\forall x;|x^2-x|\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+|x^2-x|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2004}=0\Rightarrow x-1=0\Rightarrow x=1\\\left(x^2-1\right)^{2016}=0\Rightarrow x-1=0\Rightarrow x=1\\|x^2-x|=0\Rightarrow x-x=0\Rightarrow x=1\end{cases}}\)
bímậtnhé Sai rồi :
Ta có :
\(\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+\left|x^2-x\right|=0\)
\(\hept{\begin{cases}\left(x-1\right)^{2004}=0\\\left(x^2-1\right)^{2006}=0\\\left|x^2-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2-1=0\\x^2-x=0\end{cases}}}\)
+) Từ \(x-1=0\)\(\Rightarrow\)\(x=1\)
+) Từ \(x^2-1=0\)\(\Rightarrow\)\(x^2=1\)\(\Rightarrow\)\(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
+) Từ \(x^2-x=0\)\(\Rightarrow\)\(x\left(x-1\right)=0\)\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x\in\left\{-1;0;1\right\}\)
Chúc bạn học tốt ~
a/ \(5\left(x+3\right)-2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=\frac{5}{2}\end{array}\right.\)
b/ \(4x\left(x-2004\right)-x+2004=0\)
\(\Leftrightarrow4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\Leftrightarrow\left(x-2007\right)\left(4x-1\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2007\\x=\frac{1}{4}\end{array}\right.\)
c/ \(\left(x+1\right)^2=x+1\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
A) 5(x+3)-2x(3+x)=0
=> 5(x+3)-2x(x+3)=0
=> (5-2x)(x+3)=0
\(\Rightarrow\left[\begin{array}{nghiempt}5-2x=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
Tìm x
a) 5(x+3)-2x(3+x)=0
\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=\frac{5}{2}\end{array}\right.\)
b) 4x(x-2004)-x+2004
\(\Leftrightarrow4x\left(x-2004\right)-\left(x-2004\right)=0\)
\(\Leftrightarrow\left(x-2007\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2007\\x=\frac{1}{4}\end{array}\right.\)
c) (x+1)2=x+1
\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
c) \(\left(x+1\right)^2=x+1\)
\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Rightarrow x+1.\left(x+1-1\right)=0\)
\(\Rightarrow\left(x+1\right).x=0\)
\(\Rightarrow x+1=0\) hoặc \(x=0\)
+) \(x+1=0\Rightarrow x=-1\)
Vậy x = 0 hoặc x = -1
a.\(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(\Leftrightarrow\left(3+x\right)\left(5-2x\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\5-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{2}\end{cases}}}\)
c.\(\left(x+1\right)^2=x+1\Leftrightarrow\left(x+1\right)x=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
a)\(5\left(x+3\right)-2x\left(x+3\right)=0\)
\(\left(5-2x\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-2x=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
b)\(4x\left(x+2004\right)-x+2004=0\)
\(4x^2+8016x-x+2004 =0\)
\(4x^2+8015x+2004=0\)
Xem lại đề
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
Xin lỗi,mik biết làm câu b rùi.
Ta có:A=2010*2010=2010*(2004+6)=2010*2004+2010*6.
B=2004*2016=2004*(2010+6)=2004*2010+2004*6.
Vì 2010*6>2004*6
=>2010*2004+2010*6>2004*2010+2004*6.
Hay A>B.
Ta có \(\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+\left|x^2-x\right|=0\)
=> \(\hept{\begin{cases}\left(x-1\right)^{2004}=0\\\left(x^2-1\right)^{2016}=0\\\left|x^2-x\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-1=0\\x^2-1=0\\x^2-x=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\x\left(x-1\right)=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=0\end{cases}}\)(loại)
Vậy không có x thoả mãn điều kiện bài toán.