X^2-xy-8x+8y phân tích đa thức thành nhân tử giúp m nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài làm
8x2 - 12xy - 8y2 = 0
=> ( 8x2 - 8y2 ) - 12xy = 0
=> 8( x2 - y2 ) - 12xy = 0
=> 8( x - y )( x + y ) - 12xy = 0
=> 4[ 2( x - y )( x + y ) - 3xy ] = 0
a) Ta có: \(8x+4x^2-12xy\)
\(=4x\left(2+x-3y\right)\)
b) Ta có: \(5x^3-10x^2+5x\)
\(=5x\left(x^2-2x+1\right)\)
\(=5x\left(x-1\right)^2\)
c) Ta có: \(x^3+x^2y-xy^2-y^3\)
\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
d) Ta có: \(x^2-8x-9\)
\(=x^2-9x+x-9\)
\(=\left(x-9\right)\left(x+1\right)\)
a. `8x+4x^2-12xy=4x(2+x-3y)`
b) `5x^3-10x^2+5x=5x(x^2-2x+1)`
c) `x^3+x^2y-xy^2-y^3=x^2(x+y)-y^2(x+y)=(x+y)(x^2-y^2)=(x+y)^2 (x-y)`
d) `x^2-8x-9=(x^2-2.x.4+4^2)-25=(x-4)^2-5^2=(x+1)(x-9)`
Lời giải:
a.
$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$
$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$
b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?
\(14x^2-14xy-8x+8y=14x\left(x-y\right)-8\left(x-y\right)=\left(x-y\right)\left(14x-8\right)\)
chắc Lan Anh mới vào nên ko bik tick đúng
\(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)=\left(x-8\right)\left(x-y\right)\)