K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\) ( \(a^3+b^3=a^5+b^5\))

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\)

uses crt;

var a,b,k,dem,x,y:longint;

begin

clrscr;

readln(a,b,k);

dem:=0;

for x:=1 to k do 

  for y:=1 to k do 

  if ((a<=b) and (a<=x*x) and (a<=y*y*y)) then dem:=dem+1;

writeln(dem);

readln;

end.

21 tháng 6 2017

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

23 tháng 8 2017

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

1 tháng 9 2018

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

2 tháng 9 2018

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

7 tháng 3 2021

c1:áp dụng bđt AM-GM:

\(a+b\ge2\sqrt{ab}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2=1008^2\)

=> đáp án A

c2: tương tự c1 . đáp án b

NV
8 tháng 3 2021

3.

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)

Đáp án A

4.

\(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall a\)

Đáp án A