Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2\le1+ab\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\) ( \(a^3+b^3=a^5+b^5\))
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)
\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)
\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))
Vậy \(a^2+b^2\le1+ab\)
Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)
\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)
Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\) \(\left(1\right)\)
Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)
\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)
\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\) (Do a2+b2+c2=1) \(\left(2\right)\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\) Tự chứng minh \(\left(3\right)\)
Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)
Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
Ta có: \(ab=cd\)
\(\Leftrightarrow\frac{a}{d}=\frac{c}{b}\)
Đặt \(\frac{a}{d}=\frac{c}{b}=k\) \(\left(k\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}a=dk\\c=bk\end{cases}}\)
Ta có: \(a^5+b^5+c^5+d^5\)
\(=d^5k^5+b^5+b^5k^5+d^5\)
\(=k^5\left(d^5+b^5\right)+\left(d^5+b^5\right)\)
\(=\left(k^5+1\right)\left(d^5+b^5\right)\) là hợp số
=> đpcm
Gọi \(\left(a,c\right)=k\), ta có \(a=ka',c=kc'\)và \(\left(a',c'\right)=1\)
Thay vào ab = cd được \(ka'b=kc'd\)nên \(a'b=c'd\)(*)
\(\Rightarrow a'b⋮c'\)mà\(\left(a',c'\right)=1\)nên \(b⋮c'\). Đặt \(b=c't\left(t\inℕ^∗\right)\), thay vào (*) được \(a'c't=c'd\Rightarrow a't=d\)
Do đó \(a^5+b^5+c^5+d^5=k^5a'^5+c'^5t^5+k^5c'^5+a'^5t^5\)\(=a'^5\left(k^5+t^5\right)+c'^5\left(k^5+t^5\right)=\left(a'^5+c'^5\right)\left(k^5+t^5\right)\)
Do a', c', k, t là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)