K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

Ta có a^2+b^2+c^2=1

ma a^2 ,b^2,c^2>=0

=> a,b,c>-1

=> (a+1)(b+1)(c+1)>=0

=> 1+ab+bc+ac+a+b+c+abc>=0(1)

 lai co (a+b+c+1)^2=a^2+b^2+c^2+2a+2b+2c+2ab+2bc+2ac+1

                               =2( 1+ab+bc+ac+a+b+c)>=0(2)

tu 1 va 2 => dpcm

2 tháng 4 2022

Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)

Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\) 

Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\) 

" = " \(\Leftrightarrow a=b=c=1\)

2 tháng 4 2022

 Dạ em cám ơn nhiều lắm ạ

 

4 tháng 8 2023

\(Q=\left(a^2b^2+a^2+b^2+1\right)\left(c^2+1\right)=\)

\(=a^2b^2c^2+a^2b^2+a^2c^2+a^2+b^2c^2+b^2+c^2+1=\)

\(=a^2b^2c^2+\left(a^2b^2+b^2c^2+a^2c^2\right)+\left(a^2+b^2+c^2\right)+1\) (1)

Ta có

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\)

\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1-2abc\left(a+b+c\right)\) (2)

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=\)

\(=a^2+b^2+c^2+2\)

\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\) (3)

Thay (2) và (3) vào (1)

\(Q=a^2b^2c^2+1-2abc\left(a+b+c\right)+\left(a+b+c\right)^2-2+1=\)

\(=\left(abc\right)^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2=\)

\(=\left[abc-\left(a+b+c\right)\right]^2\)

6 tháng 9 2016

Vì ab+bc+ca=1

\(\Rightarrow a^2+1\)

\(=a^2+ab+bc+ca\)

\(=\left(a^2+ab\right)+\left(ac+bc\right)\)

\(=a\left(a+b\right)+c\left(a+b\right)\)

\(=\left(a+b\right)\left(a+c\right)\)

Tương tự ta được \(\begin{cases}b^2+1=\left(b+a\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(c+b\right)\end{cases}\)

\(\Rightarrow\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)

\(=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)

Mặt khác a;b;c là số hữa tỉ

\(\Rightarrow\begin{cases}a+b\\b+c\\c+a\end{cases}\) là số hữu tỉ

\(\Rightarrow\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\) là số hữu tỉ

=> đpcm

10 tháng 3 2018

ta có: \(a^2+b^2+c^2=1\Rightarrow-1\le|a|\le1.\),tương tự với b và c

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)\(\Leftrightarrow abc+\left(a+b+c+ab+ac+bc+1\right)\ge0.\left(1\right)\)

Ta thấy \(\left(a+b+c+1\right)^2=a^2+b^2+c^2+2ab+2bc+2ac+2a+2b+2c+1.\)

                                                     \(=2+2a+2b+2c+2ab+2bc+2ac\)

                                                        \(=2\left(1+a+b+c+ab+ac+bc\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ac\ge0\left(2\right)\)

Cộng vế theo vế của (1) và (2) Suy ra \(abc+2\left(1+a+b+c+ab+ac+bc\right)\ge0\left(đpcm\right)\)

18 tháng 10 2017

Thay ab+bc+ac = 1 vào Q

18 tháng 10 2017

Thay ab+bc+ac = 1 và Q ta được :

\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương  của một số hữu tỉ (đpcm)