K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

a, Xét tứ giác KHCN có : góc CNK+CHK=90+90=180

=> KHCN nội tiếp đ.tr (O)

b, Xét tam giác CHM và AHB có : 

góc AHB=CHM=90 

góc BAH=MCH ( các góc ntiếp chắn các cung = nhau )

=> tam giác CHM đồng dạng với AHB 

=> \(\frac{AH}{HB}=\frac{HC}{HM}\) <=> AH.HM=HB.HC

29 tháng 3 2018

c, Kéo dài tia AO cắt (O) tại E 

Ta có góc ACE=90 ( góc ntiếp chắn nửa đ.tr ) 

Góc AEC=ABC ( các góc ntiếp chắn các cung = nhau ) 

Tứ giác BDNC nội tiếp nên góc ABC=AND 

Gọi giao điểm của OA và DN là I 

=> góc ABC=ANI 

Mà góc EAC+AEC=90 => ANI+NAI=90độ => OA vuông góc với DN 

Mà OA vuông góc với xy nên xy//DN

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc DCH=góc HCB=góc HAB=1/2*sđ cung BK

=góc DCK

b: Xét ΔBEI và ΔBME có

góc BEI=góc BME(=1/2*sđ cung BK)

góc EBI chung

=>ΔBEI đồng dạng với ΔBME

=>BE/BM=BI/BE
=>BE^2=BM*BI

 

a: góc ADH+góc AKH=180 độ

=>ADHK nội tiếp

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc AKD=góc ACB

Xét ΔAKD và ΔACB có

góc AKD=góc ACB

góc A chung

=>ΔAKD đồng dạng với ΔACB

7 tháng 6 2021

a) đề khúc sau là \(MK.MF=MB.MC\)

Ta có: \(\angle BKC=\angle BFC=90\Rightarrow BKFC\) nội tiếp

\(\Rightarrow\angle MKB=\angle MCF\)

Xét \(\Delta MKB\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCF\\\angle CMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKB\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MF}\Rightarrow MK.MF=MB.MC\)

b) Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MNB=\angle MCA\left(ANBCnt\right)\\\angle CMAchung\end{matrix}\right.\)

\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)

mà \(MK.MF=MB.MC\Rightarrow MK.MF=MA.MN\Rightarrow\dfrac{MK}{MA}=\dfrac{MN}{MF}\)

Xét \(\Delta MKN\) và \(\Delta MAF:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{MK}{MA}=\dfrac{MN}{MF}\\\angle AMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKN\sim\Delta MAF\left(c-g-c\right)\Rightarrow\angle MNK=\angle MFA\)

\(\Rightarrow ANKF\) nội tiếp \(\Rightarrow\angle AKN=\angle AFN\)undefined

7 tháng 6 2021

thank nha :33333

 

a) Xét tứ giác KEDC có 

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối

\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm của đường tròn này là trung điểm của KC

a) Xét tứ giác KEDC có 

\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)