tìm x biết \(|x-1|\) =2x -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25+12=0\\ \Leftrightarrow4x+38=0\\ \Leftrightarrow x=-\dfrac{19}{2}\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\\ \Leftrightarrow4x=-38\Leftrightarrow x=-\dfrac{19}{2}\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25+12=0\\ \Leftrightarrow4x+38=0\\ \Leftrightarrow x=-\dfrac{19}{2}\)
\(\Rightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\)
\(\Rightarrow4x=-38\Rightarrow x=-\dfrac{19}{2}\)
x(5 – 2x) + 2x(x – 1) = 15
(x.5 – x.2x) + (2x.x – 2x.1) = 15
5x – 2x2 + 2x2 – 2x = 15
(2x2 – 2x2) + (5x – 2x) = 15
3x = 15
x = 5.
Vậy x = 5.
Ta có \(x\left(4x+2\right)-\left(2x-5\right)\left(2x+5\right)=1\)
\(\Leftrightarrow4x^2+2x-\left(4x^2-25\right)=1\)
\(\Leftrightarrow4x^2+2x-4x^2+25=1\)
\(\Leftrightarrow2x=-24\)
\(\Leftrightarrow x=-12\)
Vậy x=-12
\(a,\Leftrightarrow x^3-8-x\left(x^2-9\right)=1\\ \Leftrightarrow x^3-8-x^3+9x=1\\ \Leftrightarrow9x=9\Leftrightarrow x=1\\ b,\Leftrightarrow8x^3+12x^2+6x+1-8x^3 +12x^2-6x+1-24x^2+24x-1=0\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
a) \(\Leftrightarrow x^3-8-x^3+9x=1\)
\(\Leftrightarrow9x=9\Leftrightarrow x=1\)
b) \(\Leftrightarrow8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2+24x-6=5\)
\(\Leftrightarrow24x=9\Leftrightarrow x=\dfrac{3}{8}\)
Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$
$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$
$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$
$\Leftrightarrow 13x+15=2$
$\Leftrightarrow 13x=2-15=-13$
$\Leftrightarrow x=-13:13=-1$
Bài 2:
$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:
$(y+4)y=5$
$\Leftrightarrow y^2+4y-5=0$
$\Leftrightarrow (y-1)(y+5)=0$
$\Leftrightarrow y=1$ hoặc $y=-5$
Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$
Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$
Ta có: \(\left(x+5\right)\left(x-1\right)=2x\left(x+5\right)\)
\(\Leftrightarrow\left(x+5\right)\left(x-1\right)-2x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-1-2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
TH1: \(x\ge5\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=x-5\\\left|2x-1\right|=2x-1\end{matrix}\right.\)
PT <=> \(x-5+2x-1=2x+3\)
<=> x = 9 (Tm)
TH2: \(\dfrac{1}{2}\le x< 5\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=5-x\\\left|2x-1\right|=2x-1\end{matrix}\right.\)
PT <=> 5 - x + 2x -1 = 2x + 3
<=> x = 1(Tm)
TH3: \(x< \dfrac{1}{2}\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=5-x\\\left|2x-1\right|=1-2x\end{matrix}\right.\)
PT <=> \(5-x+1-2x=2x+3\)
<=> \(5x=3< =>x=\dfrac{3}{5}\left(l\right)\)
KL: x \(\in\left\{1;9\right\}\)