Cho a,b,c>0 .tìm min\(p=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng BĐT AM-Gm ta có:
\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)
ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm
\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)
\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)
Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)
\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)
Đúng hay ta có ĐPCM xyar ra khi a=b=c=1
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\)\(\frac{bc+ac+ab}{abc}=0\)
\(\Leftrightarrow\)\(bc+ac+ab=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}bc=-ab-ac\\ac=-ab-bc\\ab=-bc-ac\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+2bc=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\\b^2+2ac=b^2+ac-ab-bc=\left(b-a\right)\left(b-c\right)\\c^2+2ab=c^2+ab-bc-ac=\left(c-a\right)\left(c-b\right)\end{cases}}\)
\(A=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}+\frac{ac+1}{\left(b-a\right)\left(b-c\right)}+\frac{ab+1}{\left(c-a\right)\left(c-b\right)}\)
= \(\frac{bc\left(b-c\right)+b-c+ac\left(c-a\right)+c-a+ab\left(a-b\right)+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{bc\left(b-c\right)+ca\left(c-a\right)-ab\left(b-c\right)-ab\left(c-a\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{\left(b-c\right)\left(bc-ab\right)+\left(c-a\right)\left(ca-ab\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{b\left(b-c\right)\left(c-a\right)+a\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\frac{\left(a-c\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=> \(\frac{ab+bc+ac}{abc}=0\)
=> \(ab+bc+ac=0\)
=> \(\hept{\begin{cases}ab=-bc-ac\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)
a) \(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(=\frac{bc}{a^2-ab-ac+bc}+\frac{ca}{b^2-ab-bc+ac}+\frac{ab}{c^2-ac-bc+ab}\)
\(=\frac{bc}{a\left(a-b\right)-c\left(a-b\right)}+\frac{ca}{b\left(b-a\right)-c\left(b-a\right)}+\frac{ab}{c\left(c-a\right)-b\left(c-a\right)}\)
\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ca}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}-\frac{ca}{\left(a-b\right)\left(b-c\right)}+\frac{ab}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{b^2c-bc^2}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca^2-c^2a}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{b^2c-bc^2-ca^2+c^2a+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(c^2a-bc^2\right)-\left(ca^2-b^2c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(c^2-ac-bc+ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left[\left(ab-bc\right)-\left(ac-c^2\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
b) \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{a^2-ab-ac+bc}+\frac{b^2}{b^2-ab-bc+ac}+\frac{c^2}{c^2-bc-ac+ab}\)
\(=\frac{a^2}{a\left(a-b\right)-c\left(a-b\right)}+\frac{b^2}{b\left(b-a\right)-c\left(b-a\right)}+\frac{c^2}{c\left(c-b\right)-a\left(c-b\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2b-a^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2a-b^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2b-a^2c-b^2a+b^2c+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Rightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)
\(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự: \(b^2+2ac=\left(b-c\right)\left(b-a\right)\)
\(c^2+2ab=\left(a-c\right)\left(b-c\right)\)
\(B=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}+\frac{ca+1}{\left(b-a\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}-\frac{ca+1}{\left(a-b\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-b\right)-\left(ca+1\right)\left(b-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(b-c\right)\left(bc+1-ca-1\right)+\left(a-b\right)\left(ab+1-ca-1\right)\)
\(=\left(b-c\right)\left(bc-ca\right)+\left(a-b\right)\left(ab-ca\right)\)
\(=\left(b-c\right)c\left(b-a\right)+\left(a-b\right)a\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Vậy B = 1