K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab

=>(a+b/)2ab-1/h=0

quy dong len ta co

(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0

                                                                       =>ah+bh-ab-ab=0

                                                                         =>a(h-b)-b(a-h)=0  

                                                                           =>a(h-b)=b(a-h)

                                                                              =>a/b=(a-h)(h-b)

                                                                       

12 tháng 4 2020

1) Bài này có 2 cách giải

Cách 1:

để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)

ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)

trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:

\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)

Do đó sử dụng BĐT AM-GM ta có:

\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)

Cách 2:

Sử dụng BĐT AM-GM  dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)

Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)

tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)

Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được

\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)

               \(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)

28 tháng 2 2016

A=2n+1/n+2 nguye6n<=>2n+1 chia hết cho n+2

=>2(n+2)-3 chia hết cho n+2

mà 2(n+2) chia hết cho n+2

=>3 chia hết cho n+2

=>n+2 E Ư(3)={-3;-1;1;3}

=>n E {-5;-3;-1;1}

28 tháng 2 2016

2n + 1 chia hết cho n + 2

2n + 4 - 3 chia hết cho n + 2

3 chia hết cho n + 2

n + 2 thuộc U(3) = {-3 ; -1 ; 1 ; 3}

n thuộc {-5 ; -3;  -1 ; 1} 

23 tháng 8 2016

a)để A max thì 9-x min

do đó : 9-x bé hơn hoặc bằng 0. Mặt khác : A=2016\9-x => 9-x khác 0

do đó : 9-x bé hơn hoặc bằng 1. Mà để A max => 9-x min => 9-x=1=> x=8

Và A max=2016

b) B=x​-5\x2-2 => B= x2-2-3\x2-2 = 1-3\x2-2

vì 1 là số nguyên => Đê B nguyên thì 3\x2-2 nguyên => x2-2 thuộc ước của 3

sau đó bạn chỉ cần tìm ước của 3 là tìm dk x

25 tháng 3 2018

1 ) Ta có :

b - a = 1 => b và a là hai số nguyên liên tiếp

MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( -  8 ) và ( - 9 )

Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

25 tháng 3 2018

2 ) \(\frac{1}{2.y}\)\(\frac{x}{3}-\frac{1}{6}\)

\(\frac{1}{2y}\)\(\frac{2x-1}{6}\)

=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z 

=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }

Lập bảng giá trị tương ứng giá trị của x , y :

2x - 1- 6- 3- 2- 11236
x /- 1 /01 /2 /
2y- 1- 2- 3- 66321
y /- 1 /- 33 /1 /
31 tháng 1 2019

Câu b là = 30/43 nhé, mình quên ko ghi kết quả

11 tháng 1 2020

1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)

\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)

\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)

\(=2\left(c-1\right)\left(c-2\right)+5\le5\) 

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.

2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)

3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!

11 tháng 1 2020

Mình xin lỗi vì viết sai nhé, phải là:

1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR: