Chứng minh với a thuộc Z thì \(\frac{a}{3}+\frac{a}{2}^2+\frac{a^3}{6}\) có gíá trị là số nguyên
nhank nhé. Ai trả lời nhanh và đúng mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
1) Bài này có 2 cách giải
Cách 1:
để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)
ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)
trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:
\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)
Do đó sử dụng BĐT AM-GM ta có:
\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)
Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)
Cách 2:
Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:
\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)
Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)
tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)
Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được
\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)
\(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)
A=2n+1/n+2 nguye6n<=>2n+1 chia hết cho n+2
=>2(n+2)-3 chia hết cho n+2
mà 2(n+2) chia hết cho n+2
=>3 chia hết cho n+2
=>n+2 E Ư(3)={-3;-1;1;3}
=>n E {-5;-3;-1;1}
2n + 1 chia hết cho n + 2
2n + 4 - 3 chia hết cho n + 2
3 chia hết cho n + 2
n + 2 thuộc U(3) = {-3 ; -1 ; 1 ; 3}
n thuộc {-5 ; -3; -1 ; 1}
a)để A max thì 9-x min
do đó : 9-x bé hơn hoặc bằng 0. Mặt khác : A=2016\9-x => 9-x khác 0
do đó : 9-x bé hơn hoặc bằng 1. Mà để A max => 9-x min => 9-x=1=> x=8
Và A max=2016
b) B=x2 -5\x2-2 => B= x2-2-3\x2-2 = 1-3\x2-2
vì 1 là số nguyên => Đê B nguyên thì 3\x2-2 nguyên => x2-2 thuộc ước của 3
sau đó bạn chỉ cần tìm ước của 3 là tìm dk x
1 ) Ta có :
b - a = 1 => b và a là hai số nguyên liên tiếp
MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( - 8 ) và ( - 9 )
Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
2 ) \(\frac{1}{2.y}\)= \(\frac{x}{3}-\frac{1}{6}\)
\(\frac{1}{2y}\)= \(\frac{2x-1}{6}\)
=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z
=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
Lập bảng giá trị tương ứng giá trị của x , y :
2x - 1 | - 6 | - 3 | - 2 | - 1 | 1 | 2 | 3 | 6 |
x | / | - 1 | / | 0 | 1 | / | 2 | / |
2y | - 1 | - 2 | - 3 | - 6 | 6 | 3 | 2 | 1 |
y | / | - 1 | / | - 3 | 3 | / | 1 | / |
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR: