Bài 2 : CMR
1)Nếu : a=b thì a.b=?
2)Nếu:x-y=0 thì: x.y lớn hơn bằng 0
3)Nếu:x-y+z=0 Thì:x.y+y.z-z.x lớn hơn bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Nếu a=b thì a*b=a*a=b*b=a2=b2
2)Nếu x-y=0 thì x=y =>x*y>=0
a. Ta có : x - y = 0 \(\Rightarrow\)x = y
Ta có : xy = xx ( vì x = y) = x^2
Mà x^2 \(\ge\)0 với mọi x nên xy \(\ge\)0 với mọi x.
a) Ta có x-y=0 => x=y
Ta có xy=x.x=x2 > 0 (dấu = <=> x=y=0)
b) x-y+z=0 => x=y-z.Theo kết quả câu a ta có: x(y-z) > 0 => xy-xz > 0 (1)
Tương tự: x-y+z=0 => y=x+z => y(x+z) > 0 => xy+yz > 0 (2)
x-y+z=0 => z=y-x => z(y-x) > 0 => zy-zx > 0 (3)
Cộng từng vế của bất đẳng thức (1),(2),(3) ta đc 2(xy+yz-zx) > 0
Do đó xy+yz-zx > 0 (dấu = <=> x=y=z=0)
Good luck
Làm như Vầy :
Theo bài thì ta có
/x/ + /z/ + /y/ < 0
\(\Rightarrow\)/x/ + /z/ + /y/ = 0 hoặc /x/ + /z/ + /y/ < 0
nếu /x/ + /z/ + /y/ = 0
thì x , y , z đều bằng 0
vì nếu trong x , y , z có số lớn hơn 0 thì không thể ra 0 vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Nếu /x/ + /z/ + /y/ < 0
thì ta không tìm được kết quả vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Vậy x , y , z đều bằng 0
Lời giải:
Khi $x-y+z=0\Rightarrow y=x+z$. Thay vào biểu thức $xy+yz-xz$ thì:
$xy+yz-xz=x(x+z)+(x+z)z-xz=x^2+xz+z^2=x^2+\frac{xz}{2}+\frac{xz}{2}+\frac{z^2}{4}+\frac{3}{4}z^2$
$=(x+\frac{z}{2})^2+\frac{3}{4}z^2$
Dễ thấy $(x+\frac{z}{2})^2\geq 0; \frac{3}{4}z^2\geq 0$ với mọi $x,y,z$ nên $xy+yz-xz\geq 0$
Ta có đpcm.
\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow x=y=z}\)
x^2+y^2+z^2=xy+yz+zx => x^2+y^2+z^2-xy-yz-zx = 0
<=> 2. (x^2+y^2+z^2-xy-yz-zx)=0
<=> (x^2-2xy+y^2) + (y^2-2yz+z^2)+(z^2-2zx+x^2)=0
<=> (x-y)^2 + (y-z)^2 + (z-x))^2 =0
Mà (x-y)^2, (y-z)^2, (z-x)^2 luôn >=0 với mọi x,y,z
=> x-y=y-z=z-x=0
=> x=y=z (ĐPCM)
Trả lời:
a) \(\left|a\right|+a\left(a\ge0\right)=a+a\)
\(=2a\)
b) \(\left|a\right|+a\left(a\le0\right)=-a+a=0\)
Bài 2 :
Ta có \(\left|\text{x}\right|=5\Rightarrow\text{x}=\pm5\)
\(\left|y\right|=11\Rightarrow y=\pm11\)
Chia các TH, tự tính nhé bạn~
#HuyềnAnh#
1) a2=b2
2) x-y=0 => x=y => x.y bằng 1 số nguyên dương hoặc =0