Cho a1+a2+...+a100 là các số nguyên thỏa mãn điều kiện a1+a2+...+a100=2^2015.
Chứng tó rằng a1^2+a2^2+...+a100^2 chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2
\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)
\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)
\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)
=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)
Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)
Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết
Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100
Em tham khảo link này nhé! Câu hỏi của Ngọc - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Ngọc Ánh - Toán lớp 10 | Học trực tuyến
Bạn tham khảo link tại đây nhé
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}=\frac{a_1+a_2+...+a_{100}-5050}{5050}=\frac{10100-5050}{5050}=\frac{5050}{5050}=1\)
\(\Rightarrow a_1-1=100\)
\(a_2-2=99\)
...
\(a_{100}-100=1\)
\(\Rightarrow a_1=a_2=...=a_{100}=101\)
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử 0<a1<a2<a3<...<a1000<a1<a2<a3<...<a100
Vậy a1≥1;a2≥2;....;a100≥100a1≥1;a2≥2;....;a100≥100suy ra 1/a1+1/a2+...+1/a100≤1+12+13+...+11001a1+1a2+...+1a100≤1+1/2+1/3+...+1/100
⇒1/a1+1/a2+...+1/a100<1+1/2+1/2+...+1/2(99 phân số 1/2)
⇒1/a1+1/a2+...+1/a100<1/2.(2+99)=1/2.101=101/2trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)
Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\))
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
Câu hỏi của Tran nam khanh ly - Toán lớp 6 - Học toán với OnlineMath
Em xem bài ở link này nhé!
ta có:
a3=a1.a2=1.-1=-1
a4=a2.a3=-1.-1=1
a5 , a6 ,a7 làm tương tự
ta gộp a1,a2,a3 vào 1 cặp a4 ,a5, a6 vào một cặp aa7,a8,a9...
ta thấy dãy số trên theo quy luật 1,-1,-1 rồi 1,-1,-1
ta gộp 100 số 1 cặp 3 số thì có 100:3=33(dư 1)
theo quy luật ta có số bị thừa ra là 1
vậy a100=1