K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

Tống các góc trong của lục giác bằng (6-2)180độ=720độ

Đặt A-B=B-C=C-D=D-E=E-F=a, ta có:

      A+BC+D+E+F=720độ

=>A(A-a)+(A-2a)+(A-3a)+(A+4a)+(A-5a)=720độ

=>6A-15a=720độ=>2A=5a+240độ

Với A=175độ thì a=22độ. Già trị lớn nhất của A là 175độ

Do A là số tự nhiên và chia hết cho 5 nên A<hoặc=175độ

13 tháng 2 2021

Tại sao A là stn và chia hết cho 5 thì nhỏ hơn hoặc bằng 175 ạ ?

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

Đáp án đúng là đáp án C.

Vì \(\widehat B + \widehat C = \widehat E + \widehat F\) chưa thể suy ra được \( \widehat B = \widehat E\) và \( \widehat C = \widehat F \)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Vì  ΔABC ∽ ΔDEF \( \Rightarrow \widehat A = \widehat D{,^{}}\widehat B = \widehat E{,^{}}\widehat C = \widehat F\)

Mà \(\widehat A = {60^o} \Rightarrow \widehat D = {60^o}\)

\(\widehat E = {80^o} \Rightarrow \widehat B = {80^o}\)

Có \(\widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat C = \widehat F = {180^o} - {60^o} - {80^o} = {40^o}\)

NV
13 tháng 12 2021

Đáp án B, \(\widehat{C}=\widehat{D}\)

Đề thiếu dữ kiện bạn nhé, chỉ tính được tổng của góc D và góc C thôi.

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

$\widehat{DAC}=\widehat{BAC}-\widehat{BAE}-\widehat{EAD}=90^0-20^0-30^0=40^0$

 

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta có: đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên \(a \bot AB;a \bot CD\).

Suy ra: AB // CD.

b) Đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên MN là đường trung trực của đoạn thẳng AB và CD. Suy ra: MD = MC.

Xét tam giác vuông MNC và tam giác vuông MND có: ND = NC; MD = MC.

Vậy \(\Delta MNC = \Delta MND\)(cạnh huyền – cạnh góc vuông).

c) \(\Delta MNC = \Delta MND\)nên \(\widehat {CMN} = \widehat {DMN}\).

Mà \(\widehat {AMN} = \widehat {BMN} = 90^\circ \Rightarrow \widehat {AMN} - \widehat {DMN} = \widehat {BMN} - \widehat {CMN}\).

Vậy \(\widehat {AMD} = \widehat {BMC}\).

d) Xét hai tam giác AMD và BMC có:

     MA = MB;

     \(\widehat {AMD} = \widehat {BMC}\);

     MD = MC.

Vậy \(\Delta MAD = \Delta MBC\)(c.g.c). Suy ra: \(AD = BC,\widehat A = \widehat B\) (cặp cạnh và góc tương ứng).

e) \(\Delta MAD = \Delta MBC\) nên \(\widehat {ADM} = \widehat {BCM}\) (2 góc tương ứng).

\(\Delta MNC = \Delta MND\) nên \(\widehat {MCN} = \widehat {MDN}\) (2 góc tương ứng).

Vậy \(\widehat {ADM} + \widehat {MDN} = \widehat {BCM} + \widehat {MCN}\) hay \(\widehat {ADC} = \widehat {BCD}\).