phân tích đa thức thành nhân tử
-2x^2 + 13x - 23 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{e) 2x^4 + 5x^3+13x^2+25x+15 }\)
\(\text{=2x^3(x+1)+3x^2(x+1)+10x(x+1)+15(x+1) }\)
\(\text{=(x+1)[x^2(2x+3)+5(2x+3)]}\)
\(\text{=(x+1)(2x+3)(x^2+5)}\)
\(2x^4+5x^3+13x^2+25x+15\)
\(=2x^4+2x^3+3x^3+3x^2+10x^2+10x+15x+15\)
\(=2x^3\left(x+1\right)+3x^2\left(x+1\right)+10x\left(x+1\right)+15\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3+3x^2+10x+15\right)\)
\(=2x^4-6x^3-x^3+3x^2-5x^2+15x-2x+6\)
\(=2x^3\left(x-3\right)-x^2\left(x-3\right)-5x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(2x^3-x^2-5x-2\right)\)
\(=\left(x-3\right)\left(2x^3-4x^2+3x^2-6x+x-2\right)\)
\(=\left(x-3\right)\left[2x^2\left(x-2\right)+3x\left(x-2\right)+\left(x-2\right)\right]\)
\(=\left(x-3\right)\left(x-2\right)\left(2x^2+3x+1\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(2x+1\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
THAM KHẢO NHÉ BẠN, MÌNH KO VT ĐC TRONG NÀY NÊN PHẢI RA WORD VÍT R COPY VÀO Á:
7x2−13x+6=0⇔7x2−7x−6x+6=07�2−13�+6=0⇔7�2−7�−6�+6=0
⇔7x(x−1)−6(x−1)=0⇔(7x−6)(x−1)=0⇔7�(�−1)−6(�−1)=0⇔(7�−6)(�−1)=0
⇔{x−1=07x−6=0⇔{�−1=07�−6=0 ⇔{x=17x=6⇔{�=17�=6 ⇔⎧⎨⎩x=1x=67⇔{�=1�=67 vậy x=1;x=67
`#040911`
`7x^2 - 13x + 6`
`= 7x^2 - 7x - 6x + 6`
`= (7x^2 - 7x) - (6x - 6)`
`= 7x(x - 1) - 6(x - 1)`
`= (7x - 6)(x - 1)`
\(=6x^2+3x+10x+5=3x\left(2x+1\right)+5\left(2x+1\right)=\left(3x+5\right)\left(2x+1\right)\)
=6x^2 - 4x - 9x +6
=(6x^2 -4x) - (9x-6)
=2x(3x -2) - 3(3x-2)
=(3x-2) (2x - 3)
\(-2x^2+13x-23=0\)
\(2x^2-13x+23=0\)
\(x^2-\frac{13}{2}x+\frac{23}{2}=0\)
\(x^2-2.\frac{13}{4}x+\frac{169}{16}-\frac{169}{16}+\frac{23}{2}=0\)
\(\left(x-\frac{13}{4}\right)^2+\frac{15}{16}=0\)
\(\Rightarrow x\in\varnothing\)